PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m1007.
Published online 2010 July 24. doi:  10.1107/S1600536810028771
PMCID: PMC3007239

Hexaaqua­cobalt(II) 3,3′-dicarb­oxy­biphenyl-4,4′-dicarboxyl­ate

Abstract

In the crystal structure of the title compound, [Co(H2O)6](C16H8O8), both the cation and anion are centrosymmetric. The Co cation displays a CoO6 octa­hedral geometry formed by six water mol­ecules. In the anion, the two carboxyl groups are oriented at dihedral angles of 4.8 (5) and 10.4 (7)° with respect to the benzene ring. Very strong O—H(...)O hydrogen bonds between the protonated and deprotonated carboxylate groups occur. Neighbouring cations and anions are connected through O—H(...)O hydrogen bonds into a three-dimensional supra­molecular structure.

Related literature

For related metal complexes with the biphenyl-3,3′,4,4′-tetra­carboxyl­ate ligand, see: Sun et al. (2009 [triangle]); Wang et al. (2005 [triangle], 2006 [triangle]). For the structures containing the 4,4′-dicarb­oxy­biphenyl-3,3′-dicarboxyl­ate ligand, see: Kang et al. (2009a [triangle],b [triangle]); Zhu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1007-scheme1.jpg

Experimental

Crystal data

  • [Co(H2O)6](C16H8O8)
  • M r = 495.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1007-efi1.jpg
  • a = 6.5197 (14) Å
  • b = 7.9514 (17) Å
  • c = 9.664 (2) Å
  • α = 76.339 (2)°
  • β = 87.656 (2)°
  • γ = 86.221 (2)°
  • V = 485.57 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 293 K
  • 0.23 × 0.19 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.804, T max = 0.895
  • 2871 measured reflections
  • 1590 independent reflections
  • 1305 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.169
  • S = 1.00
  • 1590 reflections
  • 146 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810028771/xu2789sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810028771/xu2789Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Biphenyl–3,3',4,4'–tetracarboxylic acid have been used to construct high–dimensional supramolecular networks due to their versatile coordination modes and potential covalent or hydrogen bonding interactions with related parts in the assembly process (Sun et al. 2009; Wang et al. 2005) such as one-dimensional covalent zigzag chain coexist with one-dimensional hydrogen-bonded ladder (Wang et al. 2006). Here we reported a mononuclear complex, containing two ionic components of complex [Co(H2O)6](C16H18O8) (I) in which the two parts are connected via O—H···O hydrogen bonds forming a three-dimensional framework. The structure of the compound (I) consists of discrete ionic entities. A labeled diagram of the crystal [Co(H2O)6](C16H18O18) is shown in Fig. 1. In the cations, the metal atom is surrounded by six aqua ligands, exhibiting a slightly distorted octahedral stereochemistry. The cis/trans O—Co—O angles are nearly 90 °. The average Co—O distance for compound (I) is 2.077 Å. The anion 3,3',4,4'–biphenyltetralate contain inversion center. The mean plane was calculated throughout the six atoms of the benzene ring. Because of symmetric reason, the two benzene rings of the biphenyl ligand are coplanar. The carboxylate groups are almost coplanar with the benzene ring with the largest deviation of -0.205 (6) Å for O4. As expected, there are considerable hydrogen bonds in the structure. The bond distances and angles are listed in Table 2. A three–dimensional structure was formed via three kinds of hydrogen bonds between the coordinated water molecules and carboxyl groups which also help to consolide the crystal packing (Fig. 2).

Experimental

A mixture of biphenyl-3,3',4,4'-tetracarboxylic acid (0.2 mmol) and Co(NO3)2.6H2O (0.4 mmol) in 12 ml methanol/water (8:3) sealed in a 25 ml Telflon-lined stainless steel autoclave was kept at 393 K for three days. Single crystals suitable for the X-ray experiment were obtained.

Refinement

The carboxyl H atom was located in a difference map and refined isotropically. The H atoms of aromatic ring and water molecules were generated geometrically and were included in the refinement in the riding model approximation with C—H = 0.93 Å, Uiso(H)= 1.2 Ueq(C) and O—H = 0.96 Å, Uiso(H)= 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title complex with the atom-numbering diagram. Ellipsoids were drawn at the 30% probability level.
Fig. 2.
The packing diagram of (I). Hydrogen bonds are marked by dashed line.

Crystal data

[Co(H2O)6](C16H8O8)Z = 1
Mr = 495.25F(000) = 255
Triclinic, P1Dx = 1.694 Mg m3
a = 6.5197 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9514 (17) ÅCell parameters from 774 reflections
c = 9.664 (2) Åθ = 2.2–25.0°
α = 76.339 (2)°µ = 0.96 mm1
β = 87.656 (2)°T = 293 K
γ = 86.221 (2)°Block, pink
V = 485.57 (18) Å30.23 × 0.19 × 0.12 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1590 independent reflections
Radiation source: fine-focus sealed tube1305 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→7
Tmin = 0.804, Tmax = 0.895k = −9→9
2871 measured reflectionsl = −11→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.1263P)2] where P = (Fo2 + 2Fc2)/3
1590 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.00000.00000.50000.0281 (3)
O10.5091 (5)0.1808 (4)1.2457 (3)0.0408 (8)
O20.3077 (5)0.1278 (4)1.0880 (4)0.0396 (8)
O30.4682 (5)0.2634 (5)0.6417 (4)0.0494 (10)
O40.2791 (5)0.1755 (4)0.8356 (3)0.0417 (8)
O51.0135 (5)−0.0174 (5)0.2911 (3)0.0434 (9)
H5B0.9751−0.13020.28580.065*
H5C1.1512−0.00020.25370.065*
O61.2248 (5)0.1707 (5)0.4594 (4)0.0444 (9)
H6A1.30790.15410.54190.067*
H6C1.30890.15080.38030.067*
O70.7843 (5)0.2081 (4)0.4461 (4)0.0441 (9)
H7A0.67630.17600.39460.066*
H7C0.72770.23720.53140.066*
C10.6112 (6)0.2899 (5)1.0027 (4)0.0255 (9)
C20.7719 (6)0.3637 (5)1.0551 (5)0.0257 (9)
H2B0.78230.34631.15320.031*
C30.9157 (6)0.4613 (5)0.9679 (5)0.0267 (9)
C40.8945 (7)0.4888 (6)0.8216 (5)0.0336 (10)
H4B0.98500.55800.75990.040*
C50.7413 (7)0.4147 (6)0.7674 (5)0.0358 (11)
H5A0.73350.43240.66910.043*
C60.5974 (6)0.3144 (5)0.8535 (5)0.0279 (9)
C70.4682 (6)0.1923 (5)1.1202 (5)0.0288 (10)
C80.4405 (7)0.2462 (6)0.7705 (5)0.0311 (10)
H20.293 (12)0.152 (9)0.999 (2)0.10 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0215 (5)0.0511 (6)0.0143 (5)−0.0164 (3)0.0002 (3)−0.0092 (4)
O10.0359 (17)0.070 (2)0.0193 (19)−0.0237 (16)0.0020 (14)−0.0103 (15)
O20.0344 (17)0.062 (2)0.025 (2)−0.0271 (15)0.0024 (15)−0.0103 (16)
O30.046 (2)0.087 (3)0.024 (2)−0.0326 (19)0.0002 (16)−0.0224 (17)
O40.0316 (17)0.066 (2)0.032 (2)−0.0238 (15)0.0005 (14)−0.0133 (16)
O50.0368 (18)0.077 (2)0.0222 (18)−0.0290 (16)0.0048 (14)−0.0167 (16)
O60.0373 (18)0.074 (2)0.028 (2)−0.0310 (16)0.0045 (15)−0.0191 (16)
O70.0361 (18)0.070 (2)0.0301 (19)−0.0101 (16)−0.0049 (15)−0.0162 (16)
C10.025 (2)0.032 (2)0.022 (2)−0.0069 (16)0.0007 (17)−0.0092 (17)
C20.026 (2)0.034 (2)0.018 (2)−0.0103 (17)−0.0028 (17)−0.0074 (17)
C30.024 (2)0.033 (2)0.024 (2)−0.0054 (17)−0.0038 (18)−0.0064 (17)
C40.038 (2)0.045 (2)0.022 (2)−0.023 (2)−0.0027 (19)−0.0090 (19)
C50.042 (3)0.045 (3)0.024 (3)−0.019 (2)−0.002 (2)−0.0117 (19)
C60.024 (2)0.034 (2)0.029 (3)−0.0078 (17)−0.0020 (18)−0.0103 (18)
C70.028 (2)0.037 (2)0.026 (3)−0.0109 (18)0.0014 (19)−0.0126 (18)
C80.029 (2)0.040 (2)0.029 (3)−0.0118 (19)−0.0047 (19)−0.0137 (19)

Geometric parameters (Å, °)

Co1—O52.054 (3)O7—H7A0.9600
Co1—O5i2.054 (3)O7—H7C0.9600
Co1—O62.027 (3)C1—C21.401 (6)
Co1—O6i2.027 (3)C1—C61.415 (6)
Co1—O72.082 (3)C1—C71.534 (6)
Co1—O7i2.082 (3)C2—C31.383 (6)
O1—C71.233 (5)C2—H2B0.9300
O2—C71.276 (5)C3—C41.390 (6)
O2—H20.85 (2)C3—C3ii1.516 (8)
O3—C81.226 (6)C4—C51.374 (6)
O4—C81.295 (5)C4—H4B0.9300
O5—H5B0.9600C5—C61.389 (6)
O5—H5C0.9601C5—H5A0.9300
O6—H6A0.9600C6—C81.526 (6)
O6—H6C0.9600
O6—Co1—O6i180.0C2—C1—C6118.3 (4)
O6—Co1—O590.40 (13)C2—C1—C7113.4 (4)
O6i—Co1—O589.60 (13)C6—C1—C7128.3 (4)
O6—Co1—O5i89.60 (13)C3—C2—C1123.2 (4)
O6i—Co1—O5i90.40 (13)C3—C2—H2B118.4
O5—Co1—O5i180.0C1—C2—H2B118.4
O6—Co1—O788.72 (14)C2—C3—C4117.5 (4)
O6i—Co1—O791.28 (14)C2—C3—C3ii120.3 (5)
O5—Co1—O789.16 (14)C4—C3—C3ii122.2 (5)
O5i—Co1—O790.84 (14)C5—C4—C3120.6 (4)
O6—Co1—O7i91.28 (14)C5—C4—H4B119.7
O6i—Co1—O7i88.72 (14)C3—C4—H4B119.7
O5—Co1—O7i90.83 (14)C4—C5—C6122.6 (4)
O5i—Co1—O7i89.17 (14)C4—C5—H5A118.7
O7—Co1—O7i180.000 (1)C6—C5—H5A118.7
C7—O2—H2111 (5)C5—C6—C1117.8 (4)
Co1—O5—H5B109.3C5—C6—C8113.7 (4)
Co1—O5—H5C109.4C1—C6—C8128.5 (4)
H5B—O5—H5C109.5O1—C7—O2120.9 (4)
Co1—O6—H6A109.3O1—C7—C1118.8 (4)
Co1—O6—H6C109.1O2—C7—C1120.3 (4)
H6A—O6—H6C109.5O3—C8—O4121.2 (4)
Co1—O7—H7A109.1O3—C8—C6118.9 (4)
Co1—O7—H7C109.5O4—C8—C6119.9 (4)
H7A—O7—H7C109.5
C6—C1—C2—C30.9 (6)C2—C1—C6—C8179.1 (4)
C7—C1—C2—C3−178.3 (4)C7—C1—C6—C8−1.9 (7)
C1—C2—C3—C41.4 (6)C2—C1—C7—O1−2.9 (6)
C1—C2—C3—C3ii179.4 (4)C6—C1—C7—O1178.0 (4)
C2—C3—C4—C5−2.8 (7)C2—C1—C7—O2175.6 (4)
C3ii—C3—C4—C5179.2 (5)C6—C1—C7—O2−3.5 (7)
C3—C4—C5—C62.0 (7)C5—C6—C8—O39.6 (6)
C4—C5—C6—C10.3 (7)C1—C6—C8—O3−171.2 (4)
C4—C5—C6—C8179.6 (4)C5—C6—C8—O4−168.7 (4)
C2—C1—C6—C5−1.8 (6)C1—C6—C8—O410.4 (7)
C7—C1—C6—C5177.3 (4)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O40.85 (2)1.55 (2)2.391 (5)173 (8)
O5—H5B···O4iii0.962.172.820 (5)124
O5—H5C···O2iv0.961.972.789 (4)142
O6—H6A···O3v0.961.842.676 (4)144
O6—H6C···O1iv0.961.792.708 (4)159
O7—H7A···O1vi0.961.832.749 (5)159
O7—H7C···O30.961.992.822 (5)144

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) x+1, y, z−1; (v) x+1, y, z; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2789).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kang, J., Huang, C.-C., Jiang, Z.-Q., Huang, S. & Huang, S.-L. (2009a). Acta Cryst. E65, m452. [PMC free article] [PubMed]
  • Kang, J., Huang, C.-C., Zhai, L.-S., Qin, X.-H. & Liu, Z.-Q. (2009b). Acta Cryst. E65, m380–m381. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, L.-X., Qi, Y., Che, Y.-X., Batten, S. R. & Zheng, J.-M. (2009). Cryst. Growth Des.9, 2995–2998.
  • Wang, X.-L., Cao, Q. & Wang, E.-B. (2005). Eur. J. Inorg. Chem. pp. 3418–3421.
  • Wang, X.-L., Cao, Q. & Wang, E.-B. (2006). Cryst. Growth Des.6, 439–433.
  • Zhu, S., Zhang, H. & Shao, M. (2008). Transition Met. Chem.33, 669–680.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography