PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2028.
Published online 2010 July 17. doi:  10.1107/S160053681002725X
PMCID: PMC3007236

(Butane-1,3-diyne-1,4-diyl)bis­(tri­isopropyl­silane)

Abstract

The mol­ecule of the title compound, C22H42Si2, lies on a center of inversion, and the triisopropyl­silyl groups are staggered.

Related literature

For the crystal structures of the trimethyl and tris-tert-butyl analogs, see: Bruckmann & Krüger (1997 [triangle]); Vitze et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2028-scheme1.jpg

Experimental

Crystal data

  • C22H42Si2
  • M r = 362.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2028-efi1.jpg
  • a = 7.1213 (10) Å
  • b = 7.9057 (11) Å
  • c = 10.6937 (14) Å
  • α = 89.139 (2)°
  • β = 81.823 (2)°
  • γ = 79.449 (2)°
  • V = 585.81 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 100 K
  • 0.40 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.941, T max = 0.985
  • 5560 measured reflections
  • 2674 independent reflections
  • 2190 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.116
  • S = 1.06
  • 2674 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002725X/jh2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002725X/jh2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The compound (Scheme I) was obtained in an unsuccessful attempt at the Sonogoshira coupling of 2,9-dichloro-1,10-phenanthroline with trisisopropylsilylacetylene. The carbon–carbon triple-bond is 1.210 (2) Å long; the distance is indistinguisahble from that [1.208 (3) Å] for bis(trimethylsilyl)acetylene (Bruckmann & Krüger, 1997) as well as that [1.22 (2) Å] found in the t-butyl analog (Vitze et al. (2009). The molecule lies on a center of inversion, and the trisisopropylsilyl groups are staggered (Fig. 1).

Experimental

Copper(I) iodide (70 mg, 0.36 mmol) and dichlorobis(triphenylphosphine)palladium (10 mg, 0.014 mmol) were added to a pyridine solution (10 ml) of triisopropylsilylacetylene (440 mg, 2.4 mmol) and 2,9-dichloro-1,10-phenanthroline (200 mg, 0.8 mmol). The solution was stirred for 4 h. The pyridine was removed under vacuum and the residue dissolved in dichloromethane (10 ml). The solution was washed with 2 N hydrochloric acid (10 ml). The solvent was evaporated and the solid recrystallized from dichloromethane to afford colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.98–1.00 Å, U(H) 1.2–1.5U(C)] and were included in the refinement in the riding model approximation.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C24H42Si2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C22H42Si2Z = 1
Mr = 362.74F(000) = 202
Triclinic, P1Dx = 1.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1213 (10) ÅCell parameters from 1787 reflections
b = 7.9057 (11) Åθ = 2.6–27.7°
c = 10.6937 (14) ŵ = 0.15 mm1
α = 89.139 (2)°T = 100 K
β = 81.823 (2)°Prism, colorless
γ = 79.449 (2)°0.40 × 0.10 × 0.10 mm
V = 585.81 (14) Å3

Data collection

Bruker SMART APEX diffractometer2674 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.941, Tmax = 0.985k = −10→10
5560 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0577P)2 + 0.057P] where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.34 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Si10.75095 (6)0.77829 (5)0.27093 (4)0.01479 (15)
C10.7369 (2)0.7104 (2)0.10482 (15)0.0195 (4)
H10.79500.58520.09800.023*
C20.5337 (3)0.7257 (2)0.07088 (18)0.0295 (4)
H2A0.54010.6716−0.01180.044*
H2B0.47450.84750.06770.044*
H2C0.45590.66790.13490.044*
C30.8628 (3)0.8009 (2)0.00649 (16)0.0269 (4)
H3A0.86420.7528−0.07760.040*
H3B0.99470.78310.02710.040*
H3C0.80960.92440.00740.040*
C40.6408 (2)1.0072 (2)0.31850 (16)0.0185 (4)
H40.64461.01470.41130.022*
C50.4277 (3)1.0599 (2)0.30187 (18)0.0264 (4)
H5A0.37461.17120.34380.040*
H5B0.35580.97280.33950.040*
H5C0.41651.06930.21160.040*
C60.7578 (3)1.1395 (2)0.25767 (18)0.0282 (4)
H6A0.70611.25260.29720.042*
H6B0.74891.14590.16710.042*
H6C0.89321.10440.26990.042*
C71.0093 (2)0.7272 (2)0.30172 (16)0.0178 (4)
H71.08070.80910.25140.021*
C81.0237 (3)0.7550 (2)0.44066 (17)0.0233 (4)
H8A1.15980.73630.45270.035*
H8B0.95850.67370.49230.035*
H8C0.96200.87300.46620.035*
C91.1074 (2)0.5444 (2)0.25796 (17)0.0233 (4)
H9A1.23680.51900.28270.035*
H9B1.11730.53580.16580.035*
H9C1.03070.46170.29730.035*
C100.6199 (2)0.64130 (19)0.37986 (15)0.0161 (3)
C110.5440 (2)0.55159 (19)0.45656 (14)0.0152 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Si10.0163 (3)0.0141 (2)0.0141 (3)−0.00465 (17)−0.00050 (17)0.00352 (16)
C10.0248 (9)0.0177 (8)0.0167 (9)−0.0068 (7)−0.0015 (7)0.0022 (6)
C20.0319 (11)0.0371 (11)0.0229 (10)−0.0123 (9)−0.0080 (8)0.0002 (8)
C30.0355 (11)0.0301 (10)0.0170 (9)−0.0146 (8)0.0009 (8)0.0004 (7)
C40.0228 (9)0.0173 (8)0.0146 (8)−0.0041 (7)0.0006 (7)0.0028 (6)
C50.0269 (10)0.0230 (9)0.0266 (10)0.0029 (7)−0.0043 (8)0.0015 (7)
C60.0361 (11)0.0163 (8)0.0302 (11)−0.0070 (8)0.0051 (9)0.0005 (7)
C70.0171 (8)0.0166 (8)0.0200 (9)−0.0055 (6)−0.0010 (7)0.0022 (6)
C80.0192 (9)0.0254 (9)0.0263 (10)−0.0034 (7)−0.0077 (7)0.0010 (7)
C90.0198 (9)0.0215 (9)0.0273 (10)−0.0009 (7)−0.0029 (7)0.0016 (7)
C100.0159 (8)0.0150 (7)0.0174 (9)−0.0017 (6)−0.0041 (7)0.0021 (6)
C110.0148 (8)0.0142 (7)0.0168 (9)−0.0010 (6)−0.0049 (7)0.0001 (6)

Geometric parameters (Å, °)

Si1—C101.8504 (16)C5—H5B0.9800
Si1—C41.8822 (17)C5—H5C0.9800
Si1—C11.8848 (17)C6—H6A0.9800
Si1—C71.8849 (17)C6—H6B0.9800
C1—C21.524 (2)C6—H6C0.9800
C1—C31.538 (2)C7—C81.526 (2)
C1—H11.0000C7—C91.533 (2)
C2—H2A0.9800C7—H71.0000
C2—H2B0.9800C8—H8A0.9800
C2—H2C0.9800C8—H8B0.9800
C3—H3A0.9800C8—H8C0.9800
C3—H3B0.9800C9—H9A0.9800
C3—H3C0.9800C9—H9B0.9800
C4—C51.533 (2)C9—H9C0.9800
C4—C61.535 (2)C10—C111.210 (2)
C4—H41.0000C11—C11i1.385 (3)
C5—H5A0.9800
C10—Si1—C4106.04 (7)C4—C5—H5B109.5
C10—Si1—C1107.42 (7)H5A—C5—H5B109.5
C4—Si1—C1117.06 (8)C4—C5—H5C109.5
C10—Si1—C7105.69 (7)H5A—C5—H5C109.5
C4—Si1—C7110.41 (7)H5B—C5—H5C109.5
C1—Si1—C7109.52 (8)C4—C6—H6A109.5
C2—C1—C3110.85 (14)C4—C6—H6B109.5
C2—C1—Si1115.47 (12)H6A—C6—H6B109.5
C3—C1—Si1111.67 (11)C4—C6—H6C109.5
C2—C1—H1106.0H6A—C6—H6C109.5
C3—C1—H1106.0H6B—C6—H6C109.5
Si1—C1—H1106.0C8—C7—C9110.89 (14)
C1—C2—H2A109.5C8—C7—Si1111.21 (11)
C1—C2—H2B109.5C9—C7—Si1111.98 (11)
H2A—C2—H2B109.5C8—C7—H7107.5
C1—C2—H2C109.5C9—C7—H7107.5
H2A—C2—H2C109.5Si1—C7—H7107.5
H2B—C2—H2C109.5C7—C8—H8A109.5
C1—C3—H3A109.5C7—C8—H8B109.5
C1—C3—H3B109.5H8A—C8—H8B109.5
H3A—C3—H3B109.5C7—C8—H8C109.5
C1—C3—H3C109.5H8A—C8—H8C109.5
H3A—C3—H3C109.5H8B—C8—H8C109.5
H3B—C3—H3C109.5C7—C9—H9A109.5
C5—C4—C6110.60 (14)C7—C9—H9B109.5
C5—C4—Si1114.57 (11)H9A—C9—H9B109.5
C6—C4—Si1113.60 (11)C7—C9—H9C109.5
C5—C4—H4105.7H9A—C9—H9C109.5
C6—C4—H4105.7H9B—C9—H9C109.5
Si1—C4—H4105.7C11—C10—Si1175.41 (14)
C4—C5—H5A109.5C10—C11—C11i179.4 (2)
C10—Si1—C1—C259.25 (14)C1—Si1—C4—C6−72.44 (15)
C4—Si1—C1—C2−59.79 (14)C7—Si1—C4—C653.75 (15)
C7—Si1—C1—C2173.58 (12)C10—Si1—C7—C8−56.07 (12)
C10—Si1—C1—C3−172.91 (12)C4—Si1—C7—C858.19 (13)
C4—Si1—C1—C368.05 (14)C1—Si1—C7—C8−171.50 (11)
C7—Si1—C1—C3−58.59 (14)C10—Si1—C7—C968.62 (13)
C10—Si1—C4—C5−63.77 (14)C4—Si1—C7—C9−177.12 (11)
C1—Si1—C4—C556.00 (14)C1—Si1—C7—C9−46.81 (13)
C7—Si1—C4—C5−177.80 (12)C1—Si1—C10—C11142.3 (18)
C10—Si1—C4—C6167.78 (12)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2179).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruckmann, J. & Krüger, C. (1997). Acta Cryst. C53, 1845–1846.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vitze, H., Wietelmann, U., Murso, A., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Z. Naturforsch. Teil B, 64, 223–228.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography