PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m890.
Published online 2010 July 7. doi:  10.1107/S1600536810026012
PMCID: PMC3007233

Diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)copper(II) bis­(4-methyl­benzoate) monohydrate

Abstract

The CuII atom in the title salt, [Cu(C10H24N4)(H2O)2](C8H7O2)2·H2O, is chelated by the four N atoms of the 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) ligand and is coordinated by two water mol­ecules in a Jahn–Teller-type of tetra­gonally distorted octa­hedral geometry. The cations, anions and lattice water mol­ecules are linked by N—H(...)O and O—H(...)O hydrogen bonds to form a layer structure parallel to (001).

Related literature

For related (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)copper carboxyl­ates, see: Lindoy et al. (2003 [triangle]); Hunter et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m890-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H24N4)(H2O)2](C8H7O2)2·H2O
  • M r = 588.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m890-efi1.jpg
  • a = 31.925 (3) Å
  • b = 7.1779 (6) Å
  • c = 28.750 (3) Å
  • β = 121.880 (1)°
  • V = 5594.4 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 100 K
  • 0.30 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.789, T max = 0.960
  • 26024 measured reflections
  • 6434 independent reflections
  • 4523 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.109
  • S = 1.01
  • 6434 reflections
  • 385 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026012/bt5288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026012/bt5288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya (grant No. RG039/09SUS) and the Ministry of Higher Education (grant No. FP017/2009) for supporting this study.

supplementary crystallographic information

Comment

The copper(II) ion forms a number of complexes with 1,4,8,11-tetraazacyclotetradecane in which the metal atom is coordinated by the four amino donor-atoms of the cyclic ligand. Among the carboxylate derivatives, neither the acetate nor the benzoate ions bind directly to the copper atom. The copper atom is coordinated instead by water molecules so that the carboxylate group interacts indirectly with the metal atom through the coordinated water molecules (Hunter et al., 2005; Lindoy et al., 2003). The copper(II) atom in the salt, [Cu(H2O)2(C10H24N4)]2+ 2(CH3C6H4CO2)-.H2O (Scheme I), is chelated by the four nitrogen atoms of the cyclam ligand and is coordinated by two water molecules in a Jahn-Teller type of tetragonally distorted octahedral geometry (Fig. 1). The cations, anions and lattice water molecules are linked by N–H···O and O–H···O hydrogen bonds to form a layer structure.

Experimental

1,4,8,11-Tetraazacyclotetradecane (0.50 g, 2.50 mmol) dissolved in ethanol (25 ml) was mixed with a suspension of copper p-toluate (0.68 g, 2.5 mmol) in ethanol (50 ml) to give a purple solution. The solution was heated for an hour and then filtered. Prismatic crystals separated from the solution when it was left to cool slowly.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of N–H 0.86±0.01, O–H 0.84±0.01 Å.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of [Cu(H2O)2(C10H24N4)]2+ 2(CH3C6H4CO2)-.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Cu(C10H24N4)(H2O)2](C8H7O2)2·H2OF(000) = 2504
Mr = 588.19Dx = 1.397 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3327 reflections
a = 31.925 (3) Åθ = 2.4–28.3°
b = 7.1779 (6) ŵ = 0.83 mm1
c = 28.750 (3) ÅT = 100 K
β = 121.880 (1)°Block, purple
V = 5594.4 (8) Å30.30 × 0.10 × 0.05 mm
Z = 8

Data collection

Bruker SMART APEX diffractometer6434 independent reflections
Radiation source: fine-focus sealed tube4523 reflections with I > 2σ(I)
graphiteRint = 0.073
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −39→41
Tmin = 0.789, Tmax = 0.960k = −8→9
26024 measured reflectionsl = −37→37

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0467P)2 + 3.0196P] where P = (Fo2 + 2Fc2)/3
6434 reflections(Δ/σ)max = 0.002
385 parametersΔρmax = 0.37 e Å3
10 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.412658 (11)0.34713 (4)0.559593 (12)0.01501 (10)
O10.47818 (6)−0.1771 (2)0.66496 (7)0.0174 (4)
O20.50203 (6)−0.1284 (2)0.60553 (7)0.0182 (4)
O30.33915 (6)0.8743 (2)0.44684 (7)0.0221 (4)
O1W0.39877 (7)0.0374 (3)0.58743 (8)0.0204 (4)
O2W0.42053 (7)0.6641 (3)0.52635 (8)0.0220 (4)
O3W0.30940 (8)−0.1475 (3)0.54990 (8)0.0291 (5)
O40.27168 (7)0.7719 (3)0.44369 (7)0.0249 (4)
N10.47989 (8)0.2709 (3)0.57497 (8)0.0159 (5)
H10.4817 (10)0.1556 (16)0.5829 (11)0.016 (7)*
N20.44938 (8)0.4440 (3)0.63695 (8)0.0164 (5)
H20.4495 (10)0.5631 (15)0.6338 (11)0.024 (8)*
N30.34589 (8)0.4280 (3)0.54508 (9)0.0185 (5)
H30.3441 (10)0.5449 (16)0.5386 (11)0.020 (8)*
N40.37563 (8)0.2541 (3)0.48193 (8)0.0174 (5)
H40.3719 (11)0.1360 (16)0.4836 (12)0.031 (9)*
C10.51636 (9)0.3789 (4)0.62349 (10)0.0187 (6)
H1A0.51770.50890.61280.022*
H1B0.54950.32290.63970.022*
C20.50050 (9)0.3757 (4)0.66449 (10)0.0204 (6)
H2A0.50250.24720.67800.024*
H2B0.52240.45640.69610.024*
C30.42706 (10)0.4097 (4)0.66988 (11)0.0228 (6)
H3A0.44820.46580.70660.027*
H3B0.42560.27370.67470.027*
C40.37544 (10)0.4909 (4)0.64307 (12)0.0272 (7)
H4A0.36450.48320.66950.033*
H4B0.37700.62450.63560.033*
C50.33683 (10)0.3979 (4)0.59015 (12)0.0248 (6)
H5A0.33670.26250.59650.030*
H5B0.30390.44780.57900.030*
C60.30837 (9)0.3366 (4)0.49338 (11)0.0231 (6)
H6A0.27650.40310.47730.028*
H6B0.30340.20620.50060.028*
C70.32624 (9)0.3411 (4)0.45436 (10)0.0222 (6)
H7A0.30320.27170.42050.027*
H7B0.32810.47130.44430.027*
C80.39989 (10)0.2750 (4)0.45028 (10)0.0218 (6)
H8A0.40300.40930.44470.026*
H8B0.37890.21730.41380.026*
C90.45044 (11)0.1862 (4)0.47853 (11)0.0248 (6)
H9A0.46180.18040.45250.030*
H9B0.44800.05690.48880.030*
C100.48843 (10)0.2908 (4)0.52945 (11)0.0232 (6)
H10A0.52170.24320.54130.028*
H10B0.48740.42450.52050.028*
C110.50985 (9)−0.1325 (3)0.65344 (10)0.0150 (5)
C120.56003 (9)−0.0723 (4)0.70001 (10)0.0146 (5)
C130.57185 (9)−0.0785 (4)0.75417 (10)0.0166 (5)
H130.5486−0.12590.76230.020*
C140.61733 (9)−0.0159 (4)0.79610 (10)0.0164 (5)
H140.6253−0.02470.83290.020*
C150.65166 (9)0.0597 (4)0.78562 (10)0.0170 (5)
C160.63953 (9)0.0675 (4)0.73143 (10)0.0173 (5)
H160.66230.11980.72330.021*
C170.59464 (9)0.0000 (4)0.68914 (10)0.0166 (5)
H170.58740.00300.65260.020*
C180.70144 (9)0.1270 (4)0.83133 (10)0.0207 (6)
H18A0.72720.07880.82580.031*
H18B0.70730.08230.86650.031*
H18C0.70210.26350.83140.031*
C190.29372 (10)0.8409 (4)0.42210 (10)0.0194 (6)
C200.26273 (9)0.8875 (3)0.36134 (11)0.0177 (6)
C210.28361 (9)0.9741 (4)0.33499 (10)0.0182 (6)
H21A0.31771.00480.35510.022*
C220.25492 (10)1.0159 (4)0.27958 (11)0.0210 (6)
H22A0.26951.07820.26240.025*
C230.20511 (10)0.9682 (4)0.24858 (10)0.0193 (6)
C240.18443 (10)0.8818 (4)0.27541 (11)0.0197 (6)
H240.15050.84890.25540.024*
C250.21318 (9)0.8438 (4)0.33112 (10)0.0183 (5)
H250.19840.78650.34880.022*
C260.17495 (11)1.0007 (4)0.18760 (11)0.0268 (7)
H26A0.13991.00420.17520.040*
H26B0.18090.89950.16890.040*
H26C0.18451.11970.17910.040*
H110.4219 (9)−0.029 (4)0.6111 (11)0.052 (11)*
H120.3716 (7)−0.018 (5)0.5734 (13)0.057 (12)*
H210.3952 (7)0.724 (4)0.5043 (10)0.036 (10)*
H220.4431 (9)0.736 (4)0.5482 (11)0.036 (10)*
H310.2885 (11)−0.178 (5)0.5575 (15)0.062 (13)*
H320.2992 (11)−0.168 (5)0.5169 (5)0.038 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01367 (16)0.01757 (17)0.01320 (15)0.00050 (13)0.00669 (12)−0.00049 (13)
O10.0142 (9)0.0203 (10)0.0183 (9)−0.0012 (7)0.0089 (8)0.0002 (7)
O20.0184 (9)0.0215 (10)0.0138 (8)−0.0010 (8)0.0078 (7)−0.0007 (7)
O30.0153 (9)0.0199 (10)0.0230 (10)−0.0016 (8)0.0047 (8)0.0001 (8)
O1W0.0165 (10)0.0175 (10)0.0236 (10)0.0018 (8)0.0081 (9)0.0044 (8)
O2W0.0203 (10)0.0178 (10)0.0195 (10)−0.0016 (9)0.0048 (9)−0.0017 (8)
O3W0.0240 (11)0.0426 (13)0.0185 (10)−0.0106 (10)0.0098 (9)0.0009 (10)
O40.0256 (10)0.0320 (12)0.0197 (9)−0.0064 (9)0.0139 (9)−0.0013 (8)
N10.0176 (11)0.0144 (12)0.0166 (11)0.0013 (9)0.0097 (9)0.0025 (9)
N20.0186 (11)0.0147 (12)0.0171 (11)0.0002 (9)0.0102 (9)0.0011 (9)
N30.0183 (11)0.0150 (12)0.0233 (12)0.0010 (9)0.0117 (10)0.0010 (9)
N40.0198 (11)0.0130 (12)0.0158 (11)−0.0008 (9)0.0069 (9)0.0015 (9)
C10.0145 (12)0.0175 (14)0.0219 (13)−0.0004 (10)0.0080 (11)−0.0005 (10)
C20.0177 (13)0.0223 (15)0.0148 (12)0.0025 (11)0.0043 (11)0.0005 (10)
C30.0306 (15)0.0239 (15)0.0188 (13)−0.0005 (12)0.0165 (12)−0.0014 (11)
C40.0317 (16)0.0285 (17)0.0326 (16)−0.0015 (13)0.0246 (14)−0.0052 (13)
C50.0255 (15)0.0229 (15)0.0347 (16)−0.0007 (12)0.0219 (13)−0.0012 (12)
C60.0148 (13)0.0184 (14)0.0266 (14)0.0008 (11)0.0044 (11)0.0027 (12)
C70.0188 (13)0.0207 (14)0.0189 (13)0.0020 (12)0.0043 (11)0.0030 (11)
C80.0288 (15)0.0230 (15)0.0140 (12)−0.0003 (12)0.0115 (12)0.0010 (11)
C90.0373 (17)0.0242 (16)0.0240 (14)0.0029 (13)0.0238 (13)0.0030 (12)
C100.0249 (14)0.0270 (16)0.0256 (14)−0.0005 (12)0.0188 (12)0.0017 (12)
C110.0164 (12)0.0108 (12)0.0171 (12)0.0036 (10)0.0085 (10)0.0013 (10)
C120.0154 (12)0.0117 (12)0.0171 (12)0.0015 (10)0.0087 (10)0.0002 (10)
C130.0156 (12)0.0159 (13)0.0193 (13)0.0011 (10)0.0100 (11)0.0015 (10)
C140.0189 (13)0.0161 (13)0.0138 (12)0.0008 (10)0.0084 (10)−0.0021 (10)
C150.0161 (12)0.0120 (13)0.0216 (13)0.0013 (10)0.0091 (11)−0.0026 (10)
C160.0135 (12)0.0173 (13)0.0212 (13)0.0003 (10)0.0093 (11)0.0029 (11)
C170.0169 (13)0.0169 (13)0.0164 (12)0.0021 (10)0.0090 (10)0.0035 (10)
C180.0165 (13)0.0221 (15)0.0202 (13)−0.0012 (11)0.0073 (11)−0.0010 (11)
C190.0217 (13)0.0153 (13)0.0214 (13)0.0021 (11)0.0115 (11)−0.0037 (11)
C200.0201 (13)0.0141 (13)0.0208 (13)0.0013 (10)0.0120 (11)−0.0017 (10)
C210.0180 (13)0.0154 (14)0.0239 (13)−0.0015 (10)0.0129 (11)−0.0030 (11)
C220.0251 (14)0.0182 (14)0.0250 (14)−0.0009 (11)0.0168 (12)−0.0003 (11)
C230.0234 (14)0.0155 (13)0.0185 (13)0.0027 (11)0.0107 (11)−0.0029 (10)
C240.0170 (13)0.0189 (14)0.0226 (14)−0.0014 (11)0.0101 (11)−0.0042 (11)
C250.0206 (13)0.0140 (13)0.0230 (13)−0.0018 (11)0.0134 (11)−0.0028 (11)
C260.0311 (16)0.0298 (17)0.0204 (14)0.0000 (13)0.0142 (13)0.0000 (12)

Geometric parameters (Å, °)

Cu1—N12.025 (2)C6—H6A0.9900
Cu1—N22.012 (2)C6—H6B0.9900
Cu1—N32.028 (2)C7—H7A0.9900
Cu1—N42.010 (2)C7—H7B0.9900
Cu1—O1w2.481 (2)C8—C91.512 (4)
Cu1—O2w2.531 (2)C8—H8A0.9900
O1—C111.260 (3)C8—H8B0.9900
O2—C111.264 (3)C9—C101.517 (4)
O3—C191.256 (3)C9—H9A0.9900
O1W—H110.841 (10)C9—H9B0.9900
O1W—H120.839 (10)C10—H10A0.9900
O2W—H210.838 (10)C10—H10B0.9900
O2W—H220.837 (10)C11—C121.510 (3)
O3W—H310.833 (10)C12—C131.396 (3)
O3W—H320.838 (10)C12—C171.397 (3)
O4—C191.260 (3)C13—C141.384 (3)
N1—C101.478 (3)C13—H130.9500
N1—C11.479 (3)C14—C151.391 (4)
N1—H10.852 (10)C14—H140.9500
N2—C21.472 (3)C15—C161.394 (3)
N2—C31.476 (3)C15—C181.510 (3)
N2—H20.860 (10)C16—C171.388 (3)
N3—C61.481 (3)C16—H160.9500
N3—C51.485 (3)C17—H170.9500
N3—H30.855 (10)C18—H18A0.9800
N4—C71.478 (3)C18—H18B0.9800
N4—C81.482 (3)C18—H18C0.9800
N4—H40.861 (10)C19—C201.522 (4)
C1—C21.509 (4)C20—C251.380 (3)
C1—H1A0.9900C20—C211.392 (4)
C1—H1B0.9900C21—C221.388 (4)
C2—H2A0.9900C21—H21A0.9500
C2—H2B0.9900C22—C231.394 (4)
C3—C41.519 (4)C22—H22A0.9500
C3—H3A0.9900C23—C241.398 (4)
C3—H3B0.9900C23—C261.507 (3)
C4—C51.516 (4)C24—C251.389 (4)
C4—H4A0.9900C24—H240.9500
C4—H4B0.9900C25—H250.9500
C5—H5A0.9900C26—H26A0.9800
C5—H5B0.9900C26—H26B0.9800
C6—C71.504 (4)C26—H26C0.9800
N4—Cu1—N2179.18 (10)C7—C6—H6B110.0
N4—Cu1—N194.96 (9)H6A—C6—H6B108.4
N2—Cu1—N185.44 (9)N4—C7—C6108.0 (2)
N4—Cu1—N385.92 (9)N4—C7—H7A110.1
N2—Cu1—N393.67 (9)C6—C7—H7A110.1
N1—Cu1—N3178.90 (10)N4—C7—H7B110.1
N4—Cu1—O1W87.71 (8)C6—C7—H7B110.1
N2—Cu1—O1W93.00 (8)H7A—C7—H7B108.4
N1—Cu1—O1W92.10 (8)N4—C8—C9112.5 (2)
N3—Cu1—O1W88.59 (8)N4—C8—H8A109.1
N4—Cu1—O2W89.81 (8)C9—C8—H8A109.1
N2—Cu1—O2W89.46 (8)N4—C8—H8B109.1
N1—Cu1—O2W91.16 (8)C9—C8—H8B109.1
N3—Cu1—O2W88.18 (8)H8A—C8—H8B107.8
O1W—Cu1—O2W176.06 (6)C8—C9—C10113.1 (2)
Cu1—O1W—H11123 (3)C8—C9—H9A109.0
Cu1—O1W—H12126 (3)C10—C9—H9A109.0
H11—O1W—H12111 (4)C8—C9—H9B109.0
Cu1—O2W—H21120 (2)C10—C9—H9B109.0
Cu1—O2W—H22119 (2)H9A—C9—H9B107.8
H21—O2W—H22111 (3)N1—C10—C9112.3 (2)
H31—O3W—H32112 (3)N1—C10—H10A109.1
C10—N1—C1111.3 (2)C9—C10—H10A109.1
C10—N1—Cu1116.79 (16)N1—C10—H10B109.1
C1—N1—Cu1106.24 (15)C9—C10—H10B109.1
C10—N1—H1108.2 (19)H10A—C10—H10B107.9
C1—N1—H1110.4 (18)O1—C11—O2124.6 (2)
Cu1—N1—H1103.6 (19)O1—C11—C12117.6 (2)
C2—N2—C3111.9 (2)O2—C11—C12117.8 (2)
C2—N2—Cu1108.23 (16)C13—C12—C17118.8 (2)
C3—N2—Cu1117.02 (16)C13—C12—C11121.0 (2)
C2—N2—H2108.9 (19)C17—C12—C11120.1 (2)
C3—N2—H2105.3 (19)C14—C13—C12120.2 (2)
Cu1—N2—H2105.0 (19)C14—C13—H13119.9
C6—N3—C5112.6 (2)C12—C13—H13119.9
C6—N3—Cu1106.55 (16)C13—C14—C15121.5 (2)
C5—N3—Cu1116.53 (17)C13—C14—H14119.3
C6—N3—H3106.9 (19)C15—C14—H14119.3
C5—N3—H3108.2 (19)C14—C15—C16118.2 (2)
Cu1—N3—H3105.4 (19)C14—C15—C18121.6 (2)
C7—N4—C8112.5 (2)C16—C15—C18120.2 (2)
C7—N4—Cu1106.88 (16)C17—C16—C15120.9 (2)
C8—N4—Cu1117.20 (16)C17—C16—H16119.5
C7—N4—H4108 (2)C15—C16—H16119.5
C8—N4—H4105 (2)C16—C17—C12120.4 (2)
Cu1—N4—H4107 (2)C16—C17—H17119.8
N1—C1—C2107.9 (2)C12—C17—H17119.8
N1—C1—H1A110.1C15—C18—H18A109.5
C2—C1—H1A110.1C15—C18—H18B109.5
N1—C1—H1B110.1H18A—C18—H18B109.5
C2—C1—H1B110.1C15—C18—H18C109.5
H1A—C1—H1B108.4H18A—C18—H18C109.5
N2—C2—C1108.0 (2)H18B—C18—H18C109.5
N2—C2—H2A110.1O3—C19—O4125.1 (2)
C1—C2—H2A110.1O3—C19—C20117.7 (2)
N2—C2—H2B110.1O4—C19—C20117.3 (2)
C1—C2—H2B110.1C25—C20—C21118.5 (2)
H2A—C2—H2B108.4C25—C20—C19120.5 (2)
N2—C3—C4111.9 (2)C21—C20—C19121.0 (2)
N2—C3—H3A109.2C22—C21—C20120.4 (2)
C4—C3—H3A109.2C22—C21—H21A119.8
N2—C3—H3B109.2C20—C21—H21A119.8
C4—C3—H3B109.2C21—C22—C23121.3 (3)
H3A—C3—H3B107.9C21—C22—H22A119.4
C5—C4—C3115.4 (2)C23—C22—H22A119.4
C5—C4—H4A108.4C22—C23—C24117.9 (2)
C3—C4—H4A108.4C22—C23—C26121.2 (2)
C5—C4—H4B108.4C24—C23—C26120.9 (2)
C3—C4—H4B108.4C25—C24—C23120.4 (2)
H4A—C4—H4B107.5C25—C24—H24119.8
N3—C5—C4112.5 (2)C23—C24—H24119.8
N3—C5—H5A109.1C20—C25—C24121.4 (2)
C4—C5—H5A109.1C20—C25—H25119.3
N3—C5—H5B109.1C24—C25—H25119.3
C4—C5—H5B109.1C23—C26—H26A109.5
H5A—C5—H5B107.8C23—C26—H26B109.5
N3—C6—C7108.3 (2)H26A—C26—H26B109.5
N3—C6—H6A110.0C23—C26—H26C109.5
C7—C6—H6A110.0H26A—C26—H26C109.5
N3—C6—H6B110.0H26B—C26—H26C109.5
N4—Cu1—N1—C1036.50 (19)Cu1—N3—C5—C456.2 (3)
N2—Cu1—N1—C10−142.78 (19)C3—C4—C5—N3−67.2 (3)
O1W—Cu1—N1—C10124.38 (18)C5—N3—C6—C7−168.5 (2)
O2W—Cu1—N1—C10−53.41 (19)Cu1—N3—C6—C7−39.5 (2)
N4—Cu1—N1—C1161.28 (16)C8—N4—C7—C6−171.8 (2)
N2—Cu1—N1—C1−17.99 (16)Cu1—N4—C7—C6−41.8 (2)
O1W—Cu1—N1—C1−110.83 (16)N3—C6—C7—N455.1 (3)
O2W—Cu1—N1—C171.37 (16)C7—N4—C8—C9179.9 (2)
N1—Cu1—N2—C2−11.11 (17)Cu1—N4—C8—C955.4 (3)
N3—Cu1—N2—C2169.54 (17)N4—C8—C9—C10−70.6 (3)
O1W—Cu1—N2—C280.77 (17)C1—N1—C10—C9−178.1 (2)
O2W—Cu1—N2—C2−102.31 (17)Cu1—N1—C10—C9−55.9 (3)
N1—Cu1—N2—C3−138.62 (19)C8—C9—C10—N171.1 (3)
N3—Cu1—N2—C342.03 (19)O1—C11—C12—C134.4 (4)
O1W—Cu1—N2—C3−46.75 (19)O2—C11—C12—C13−178.0 (2)
O2W—Cu1—N2—C3130.17 (18)O1—C11—C12—C17−172.3 (2)
N4—Cu1—N3—C613.16 (17)O2—C11—C12—C175.3 (4)
N2—Cu1—N3—C6−167.56 (17)C17—C12—C13—C14−0.7 (4)
O1W—Cu1—N3—C6−74.65 (17)C11—C12—C13—C14−177.5 (2)
O2W—Cu1—N3—C6103.09 (17)C12—C13—C14—C152.0 (4)
N4—Cu1—N3—C5139.77 (19)C13—C14—C15—C16−1.3 (4)
N2—Cu1—N3—C5−40.95 (19)C13—C14—C15—C18−179.6 (2)
O1W—Cu1—N3—C551.96 (18)C14—C15—C16—C17−0.7 (4)
O2W—Cu1—N3—C5−130.29 (18)C18—C15—C16—C17177.6 (2)
N1—Cu1—N4—C7−163.46 (17)C15—C16—C17—C121.9 (4)
N3—Cu1—N4—C715.88 (17)C13—C12—C17—C16−1.2 (4)
O1W—Cu1—N4—C7104.62 (16)C11—C12—C17—C16175.5 (2)
O2W—Cu1—N4—C7−72.32 (16)O3—C19—C20—C25176.1 (2)
N1—Cu1—N4—C8−36.14 (19)O4—C19—C20—C25−4.0 (4)
N3—Cu1—N4—C8143.20 (19)O3—C19—C20—C21−3.7 (4)
O1W—Cu1—N4—C8−128.05 (18)O4—C19—C20—C21176.2 (2)
O2W—Cu1—N4—C855.01 (18)C25—C20—C21—C220.3 (4)
C10—N1—C1—C2171.4 (2)C19—C20—C21—C22−180.0 (2)
Cu1—N1—C1—C243.2 (2)C20—C21—C22—C23−1.8 (4)
C3—N2—C2—C1168.1 (2)C21—C22—C23—C242.0 (4)
Cu1—N2—C2—C137.7 (2)C21—C22—C23—C26−175.4 (2)
N1—C1—C2—N2−54.6 (3)C22—C23—C24—C25−0.7 (4)
C2—N2—C3—C4176.4 (2)C26—C23—C24—C25176.7 (2)
Cu1—N2—C3—C4−57.9 (3)C21—C20—C25—C241.0 (4)
N2—C3—C4—C567.7 (3)C19—C20—C25—C24−178.7 (2)
C6—N3—C5—C4179.8 (2)C23—C24—C25—C20−0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.85 (1)2.13 (1)2.971 (3)167 (3)
N2—H2···O1i0.86 (1)2.06 (2)2.847 (3)151 (3)
N3—H3···O3wi0.86 (1)2.57 (2)3.291 (3)143 (2)
N4—H4···O3ii0.86 (1)2.14 (2)2.927 (3)152 (3)
O1w—H11···O10.84 (1)1.95 (1)2.792 (2)177 (4)
O1w—H12···O3w0.84 (1)1.96 (1)2.795 (3)173 (3)
O2w—H21···O30.84 (1)1.99 (1)2.825 (3)173 (3)
O2w—H22···O2i0.84 (1)1.98 (1)2.813 (3)172 (3)
O3w—H31···O4iii0.83 (1)2.02 (1)2.835 (3)166 (4)
OwW—H32···O4ii0.84 (1)1.85 (1)2.688 (3)174 (3)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5288).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hunter, T. M., McNae, I. W., Liang, X., Bella, J., Parsons, S., Walkinshaw, M. D. & Sadler, P. J. (2005). Proc. Natl Acad. Sci. USA, 102, 2288–2292. [PubMed]
  • Lindoy, L. F., Mahinay, M. S., Skelton, B. W. & White, A. H. (2003). J. Coord. Chem.56, 1203–1213.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography