PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1945.
Published online 2010 July 7. doi:  10.1107/S1600536810024554
PMCID: PMC3007232

2-Amino­anilinium 2-chloro­acetate

Abstract

In the crystal structure of the title compound, C6H9N2 +·ClCH2COO, prepared by the reaction of OPDA (orthophenelynediamine) with chloro­acetic ­acid, N—H(...)O hydrogen bonds generate ladder-like chains and very weak inter­molecular C—H(...)Cl hydrogen-bonding inter­actions between the anions and cations lead to a supra­molecular network. C—H(...)O inter­actions also occur.

Related literature

For hydrogen bonding with chlorine, see: Brammer et al. (2008 [triangle]); Metrangolo et al. (2006 [triangle], 2009 [triangle]). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996 [triangle]); Kinbara, Kai et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1945-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C2H2ClO2
  • M r = 202.64
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1945-efi1.jpg
  • a = 11.371 (3) Å
  • b = 4.4852 (11) Å
  • c = 20.115 (4) Å
  • β = 110.439 (12)°
  • V = 961.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 298 K
  • 0.36 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.879, T max = 0.944
  • 9366 measured reflections
  • 1922 independent reflections
  • 1651 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.137
  • S = 1.09
  • 1922 reflections
  • 126 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024554/ds2035sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024554/ds2035Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, Government of India, for the National X-ray Diffractometer facility at the University of Hyderabad. We acknowledge the Department of Science and Technology, Government of India, for financial support (project No. SR/S1/IC-23/2007). ASR and RK are grateful to the CSIR, Government of India, and BKT thanks the UGC, Government of India, for their fellowships. We also thank Dr A. R. Bijju, School of Chemistry, University of Hyderabad, for helpful discussions.

supplementary crystallographic information

Comment

We have reported here the synthesis and structural characterization of a hitherto unknown organic ion pair compound 1, consisting of orthophenylenediammonium cation and chloroacetate anion, that provides a good supramolecular information. The ladder-type one-dimensional chainlike arrangement has been generated because of N—H···O hydrogen bonding interaction in the crystal of compound 1, as shown in Fig. 3.

Experimental

OPDA (Orthophenelynediamine)(0.108 g, 1 mmol) was dissolved in 20 ml of acetonitrile solution and which was added the solution of 25 ml of methanol containing chloroaceticacid (0.23 g, 1 mmol); this reaction mixture was stirred for 5 min and kept for crystalization at room temperature. Colorless needle-like crystals were formed after 3 days (yield: 0.145 g, 72% based on OPDA).

Refinement

All H atoms were found on difference maps, with C—H=0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq(C)

Figures

Fig. 1.
ORTEP diagram of the compound 1 (Thermal ellipsoids are at 50% probability level).
Fig. 2.
Interactions of C—H···cl in the compound 1 give rise to diverse supramolecular network and all the inetractions arround the cation and anion respectively with symetry codes All the symetry codes for hyderogen bonding were ...
Fig. 3.
The ladder-type one-dimensional chainlike arrangement generated by N—H···O hydrogen bonding interactions.
Fig. 4.
Hydrogen bonding situation around the cation.
Fig. 5.
Hydrogen bonding situation around the anion.
Fig. 6.
The formation of the title compound.

Crystal data

C6H9N2+·C2H2ClO2F(000) = 424
Mr = 202.64Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5050 reflections
a = 11.371 (3) Åθ = 2.3–26.1°
b = 4.4852 (11) ŵ = 0.37 mm1
c = 20.115 (4) ÅT = 298 K
β = 110.439 (12)°Needle, colorless
V = 961.3 (4) Å30.36 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1922 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
graphiteRint = 0.025
phi and ω scansθmax = 26.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −14→14
Tmin = 0.879, Tmax = 0.944k = −5→5
9366 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3616P] where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.38338 (15)0.3513 (3)0.89834 (8)0.0425 (4)
H1A0.46960.35850.90560.051*
H1B0.36870.19140.92490.051*
H1C0.36250.51140.91890.051*
N20.4570 (2)−0.0303 (6)0.80725 (13)0.0819 (7)
H2A0.4758−0.14280.78090.098*
H2B0.52010.03940.84280.098*
C10.1923 (2)0.4640 (5)0.79778 (11)0.0539 (5)
H10.16950.59540.82690.065*
C20.1128 (2)0.4187 (6)0.72902 (12)0.0641 (6)
H20.03600.51670.71170.077*
C30.1485 (3)0.2267 (6)0.68631 (12)0.0655 (7)
H30.09500.19320.64000.079*
C40.2628 (2)0.0833 (6)0.71141 (12)0.0630 (6)
H40.2861−0.04220.68130.076*
C50.3443 (2)0.1229 (5)0.78112 (11)0.0499 (5)
C60.30556 (18)0.3157 (4)0.82373 (10)0.0422 (4)
Cl10.88856 (6)−0.20415 (18)1.05309 (4)0.0787 (3)
O10.63853 (15)0.3221 (4)0.92605 (9)0.0630 (5)
O20.65904 (16)0.1467 (3)1.03239 (8)0.0563 (4)
C70.69161 (19)0.1690 (4)0.97966 (10)0.0453 (5)
C80.8017 (2)−0.0074 (7)0.97533 (13)0.0612 (6)
H8A0.855 (3)0.122 (8)0.9661 (16)0.090 (10)*
H8B0.767 (3)−0.161 (9)0.938 (2)0.118 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0520 (9)0.0381 (8)0.0424 (8)−0.0007 (7)0.0229 (7)−0.0024 (6)
N20.0660 (13)0.0873 (16)0.0926 (16)0.0075 (12)0.0278 (12)−0.0425 (13)
C10.0615 (13)0.0508 (12)0.0534 (12)0.0014 (10)0.0250 (10)0.0040 (9)
C20.0615 (13)0.0702 (15)0.0563 (13)0.0000 (12)0.0150 (11)0.0151 (12)
C30.0715 (15)0.0782 (16)0.0434 (12)−0.0223 (13)0.0160 (11)0.0026 (11)
C40.0819 (17)0.0650 (14)0.0515 (12)−0.0217 (13)0.0351 (12)−0.0159 (11)
C50.0571 (12)0.0476 (11)0.0528 (11)−0.0117 (9)0.0290 (10)−0.0088 (9)
C60.0515 (11)0.0379 (9)0.0421 (10)−0.0073 (8)0.0228 (8)0.0004 (7)
Cl10.0550 (4)0.0965 (6)0.0777 (5)0.0095 (3)0.0146 (3)0.0200 (4)
O10.0545 (9)0.0749 (11)0.0602 (10)0.0028 (8)0.0207 (8)0.0171 (8)
O20.0803 (10)0.0421 (8)0.0640 (9)−0.0001 (7)0.0472 (8)−0.0018 (6)
C70.0480 (11)0.0445 (10)0.0471 (11)−0.0094 (8)0.0214 (9)−0.0046 (8)
C80.0584 (13)0.0771 (17)0.0549 (13)0.0100 (12)0.0285 (11)0.0064 (12)

Geometric parameters (Å, °)

N1—C61.461 (2)C3—C41.378 (4)
N1—H1A0.9402C3—H30.9300
N1—H1B0.9425C4—C51.396 (3)
N1—H1C0.9015C4—H40.9300
N2—C51.385 (3)C5—C61.393 (3)
N2—H2A0.8138Cl1—C81.767 (3)
N2—H2B0.8747O1—C71.243 (3)
C1—C21.378 (3)O2—C71.244 (2)
C1—C61.380 (3)C7—C81.509 (3)
C1—H10.9300C8—H8A0.90 (3)
C2—C31.374 (4)C8—H8B0.99 (4)
C2—H20.9300
C6—N1—H1A112.9C3—C4—C5121.3 (2)
C6—N1—H1B109.6C3—C4—H4119.4
H1A—N1—H1B108.6C5—C4—H4119.4
C6—N1—H1C113.4N2—C5—C6121.6 (2)
H1A—N1—H1C109.2N2—C5—C4121.3 (2)
H1B—N1—H1C102.6C6—C5—C4117.1 (2)
C5—N2—H2A118.7C1—C6—C5121.37 (19)
C5—N2—H2B121.3C1—C6—N1119.11 (17)
H2A—N2—H2B115.2C5—C6—N1119.45 (18)
C2—C1—C6120.5 (2)O1—C7—O2125.8 (2)
C2—C1—H1119.8O1—C7—C8113.63 (18)
C6—C1—H1119.8O2—C7—C8120.5 (2)
C3—C2—C1119.1 (2)C7—C8—Cl1115.41 (16)
C3—C2—H2120.4C7—C8—H8A107 (2)
C1—C2—H2120.4Cl1—C8—H8A107 (2)
C2—C3—C4120.7 (2)C7—C8—H8B107 (2)
C2—C3—H3119.7Cl1—C8—H8B106 (2)
C4—C3—H3119.7H8A—C8—H8B114 (3)
C6—C1—C2—C3−0.8 (3)N2—C5—C6—C1−178.9 (2)
C1—C2—C3—C4−0.7 (4)C4—C5—C6—C1−0.9 (3)
C2—C3—C4—C51.5 (4)N2—C5—C6—N1−1.8 (3)
C3—C4—C5—N2177.4 (2)C4—C5—C6—N1176.18 (18)
C3—C4—C5—C6−0.7 (3)O1—C7—C8—Cl1174.88 (19)
C2—C1—C6—C51.6 (3)O2—C7—C8—Cl1−7.3 (3)
C2—C1—C6—N1−175.42 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.901.882.777 (2)173
N1—H1B···O2ii0.941.822.763 (2)173
N2—H2B···O10.872.163.004 (3)163
C4—H4···O1iii0.932.663.527 (3)156
C3—H3···Cl1iv0.933.243.985 (3)138
N2—H2A···N2iii0.812.773.587 (4)179
C8—H8A···Cl1v0.90 (3)3.10 (3)3.878 (3)146 (3)
C8—H8B···O1vi0.99 (4)2.71 (4)3.491 (4)136 (3)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, −y−1/2, z−1/2; (v) −x+2, −y, −z+2; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2035).

References

  • Brammer, L., Espellargas, G. M. & Libri, S. (2008). CrystEngComm, 10, 1712–1727.
  • Bruker (2003). SADABS, SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kinbara, K., Hashimoto, Y., Sukegawa, Y., Nohira, H. & Saigo, A. (1996). J. Am. Chem. Soc.118, 3441–3449.
  • Kinbara, K., Kai, A., Maekawa, Y., Hashimoto, Y., Naruse, S., Hasegawa, M. & Saigo, K. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 247–253.
  • Metrangolo, P., Pilati, T. & Resnati, G. (2006). CrystEngComm, 8, 946–947.
  • Metrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). CrystEngComm, 11, 1187–1196.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography