PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1986–o1987.
Published online 2010 July 10. doi:  10.1107/S1600536810026176
PMCID: PMC3007230

3-Benzyl-3-hy­droxy-2-phenyl-3H-indole 1-oxide

Abstract

The asymmetric unit of the title compound, C21H17NO2, contains two crystallographically independent mol­ecules of similar geometry. The indole ring systems form dihedral angles of 8.30 (5) and 9.58 (5)° with the attached phenyl rings, and 56.96 (5) and 57.68 (5)° with the aromatic rings of the respective benzyl groups. The mol­ecular conformations are stabilized by intra­molecular C—H(...)O hydrogen bonds. In the crystal structure, centrosymmetrically related pairs of mol­ecules are linked into dimers through pairs of inter­molecular O—H(...)O hydrogen bonds, generating 12-membered rings with R 2 2(12) motifs. The dimers are further linked into a three-dimensional network by C—H(...)O inter­actions.

Related literature

For the use of nitro­nes in the spin-trapping technique and in organic synthesis, see: Janzen (1971 [triangle]); Zubarev (1979 [triangle]); Balasubramanian (1985 [triangle]); Pisaneschi et al. (2002 [triangle]); Jones et al. (2000 [triangle]); Bernotas et al. (1999 [triangle]); Ali & Wazeer (1988 [triangle]); Merino (2005 [triangle]); Chiacchio et al. (2006 [triangle]); Revuelta et al. (2008 [triangle]); Astolfi et al. (2003 [triangle]); Greci et al. (2001 [triangle]); Tommasi et al. (1999 [triangle]); Bruni et al. (1998 [triangle]). For a related structure, see: Yamada et al. (2003 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]). For the preparation of 2-phenyl­isatogen, see: Bond & Hooper (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1986-scheme1.jpg

Experimental

Crystal data

  • C21H17NO2
  • M r = 315.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1986-efi1.jpg
  • a = 11.635 (2) Å
  • b = 11.971 (2) Å
  • c = 12.063 (3) Å
  • α = 84.773 (5)°
  • β = 88.882 (6)°
  • γ = 88.635 (6)°
  • V = 1672.5 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.64 mm−1
  • T = 294 K
  • 0.26 × 0.24 × 0.18 mm

Data collection

  • Siemens AED diffractometer
  • 6045 measured reflections
  • 6045 independent reflections
  • 5126 reflections with I > 2σ(I)
  • 3 standard reflections every 100 reflections intensity decay: 0.02%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.162
  • S = 1.05
  • 6045 reflections
  • 442 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: AED (Belletti et al., 1993 [triangle]); cell refinement: AED; data reduction: AED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SCHAKAL97 (Keller, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810026176/ez2222sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810026176/ez2222Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Universitá Politecnica delle Marche and the Universitá degli Studi di Parma is gratefully acknowledged.

supplementary crystallographic information

Comment

Many types of cyclic and acyclic nitrones, such as N-tert-butyl-α-phenylnitrone and 5,5-dimethyl-pyrroline-N-oxide, have been used frequently in the spin trapping technique since its inception (Janzen, 1971; Zubarev, 1979). Nitrones are also used in the syntheses of isoxazolidines through 1,3-dipolar cycloaddition with a series of dipolarophiles (Balasubramanian, 1985). Although the most used nitrones in cyclization reactions are acyclic, several papers have appeared in the last two decades describing cycloaddition reactions with cyclic nitrones (Pisaneschi et al., 2002; Jones et al., 2000; Bernotas et al., 1999; Ali & Wazeer, 1988). Significant advances have been described in the use of nitrones derived from sugars and aminoacids for the synthesis of interesting biological compounds including aminoacids, amino alcohols and nucleoside analogs (Merino, 2005). On this basis, enantioselective syntheses of homo-carboxylic-2'-oxo-3'-azo-nucleosides were achieved by cycloaddition reactions of N-glycosyl nitrones with allylic nucleobases (Chiacchio et al., 2006). Moreover, a series of 3-spirocyclopropane dihydro- and tetrahydropyrid-4-ones were synthesized by nitrone cycloaddition to 1,1'-bicyclopropylidene (Revuelta et al., 2008). The title compound was synthesized in order to continue our studies on 1,3-dipolar cycloaddition with different dipolarophiles, with particular focus on the catalytic activity of metal cations such as cobalt(II), calcium(II), zinc(II) and nickel(II) (Astolfi et al., 2003; Greci et al., 2001; Tommasi et al., 1999; Bruni et al., 1998).

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules with similar geometry. The indole ring systems including the N1 and N2 atoms form dihedral angles of 8.30 (5) and 9.58 (5)°, respectively, with the attached phenyl rings, and 56.96 (5) and 57.68 (5)°, respectively, with the aromatic ring of the benzyl groups. The N–O (mean value 1.304 (2) Å) and C–O (mean value 1.420 (2) Å) bond lengths are comparable with those found in 3-hydroxy-2,3-dimethyl-3H-indole N-oxide [1.3093 (17) and 1.418 (2) Å respectively; Yamada et al., 2003]. The molecular conformations are stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal packing, centrosymmetrically related molecules are linked into dimers (Fig. 2) through intermolecular O—H···O hydrogen bonds resulting in twelve-membered rings with R22(12) motifs (Bernstein et al., 1995). Within the dimers, the centroid-to-centroid separations between the opposite C1–C6/C9i–C14i and C22–C27/C30ii–C35ii aromatic rings are 3.893 (2) and 3.920 (2) Å, respectively (symmetry codes: (i) 1 - x. -y, 1 - z; (ii) -x, 1 - y, 1 - z). The dimers are further connected by C—H···O hydrogen bonds into a three-dimensional network (Fig. 3).

Experimental

A solution of benzylmagnesium bromide (20 mmoles in 30 ml of dried THF, obtained from 0.46 g of magnesium and 2.54 g of benzyl chloride in a current of argon) was added to a solution of 2-phenylisatogen (10 mmoles, 2.23 g in 50 ml of dried THF; Bond & Hooper, 1974), at room temperature and under magnetic stirring. After the addition, the reaction mixture was kept at room temperature for 2 h, then it was poured into 10% aqueous NH4Cl (100 ml) solution. The mixture was extracted with chloroform (2 × 50 ml) and the separated organic layer was dried on Na2SO4 and evaporated to dryness. The residue was treated with diethyl ether to give a white solid corresponding to the expected nitrone, which was separated by filtration under vacuum and washed with diethyl ether (obtained 2.04 g, yield 65%, m.p. 200–201 °C. FT—IR, ν, cm-1, 3143 (OH). 1601 (O<-N=C<), 1519. 1H NMR, δ, CDCl3: 3.36 (2H, pseudo-q, –CH2Ph, distereotopic H atoms), 6.41 (2H, d, arom.), 6.81–7.07 (5H,m, arom.). 7.13–7.55 (3H, m, arom.), 7.3–7.4 (2H. m, arom.), 8.6 (2H, pseudo-q, arom). Mass. calcd. for C21H17NO2, 315.39; found: m/z (%): 315 (M+, 5.7), 224 (34.4), 208 (58.6), 179 (100). The melting point was measured on a Mitamura Riken Kogyo mp D electrochemical apparartus and was not corrected. FT—IR spectrum was recorded in KBr with a Perkin-Elmer MGX1 spectrophotometer equipped with Spectra Tech. 1H NMR spectrum was recorded on a Gemini Varian 200 MHz. Mass spectrum was recorded on a Carlo Erba QMD 1000 mass spectrometer in positive electron impact (EI) mode. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The hydroxy H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
View of the centrosymmetric dimers of the title formed through intermolecular O—H···O hydrogen bonds (dashed lines). Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, 1 - y, 1 - z.
Fig. 3.
Crystal packing of the title compound viewed approximately along the c axis. Intra- and intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C21H17NO2Z = 4
Mr = 315.36F(000) = 664
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 11.635 (2) ÅCell parameters from 48 reflections
b = 11.971 (2) Åθ = 16.4–48.4°
c = 12.063 (3) ŵ = 0.64 mm1
α = 84.773 (5)°T = 294 K
β = 88.882 (6)°Block, pale yellow
γ = 88.635 (6)°0.26 × 0.24 × 0.18 mm
V = 1672.5 (6) Å3

Data collection

Siemens AED diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 68.0°, θmin = 3.7°
graphiteh = −9→13
θ/2θ scansk = −14→10
6045 measured reflectionsl = −14→14
6045 independent reflections3 standard reflections every 100 reflections
5126 reflections with I > 2σ(I) intensity decay: 0.02%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162w = 1/[σ2(Fo2) + (0.0996P)2 + 0.2753P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6045 reflectionsΔρmax = 0.22 e Å3
442 parametersΔρmin = −0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (5)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.46993 (13)0.19070 (10)0.43394 (10)0.0705 (4)
O20.54286 (11)−0.16774 (9)0.33565 (11)0.0571 (3)
H2O0.534 (2)−0.172 (2)0.410 (2)0.088 (7)*
O30.03259 (14)0.68855 (10)0.44282 (11)0.0754 (4)
O4−0.00423 (11)0.33865 (9)0.32592 (12)0.0628 (3)
H4O−0.013 (2)0.328 (2)0.407 (2)0.097 (8)*
N10.52177 (13)0.10469 (10)0.39161 (11)0.0549 (4)
N2−0.00636 (14)0.60551 (10)0.39494 (11)0.0565 (4)
C10.64142 (16)0.08049 (13)0.40690 (13)0.0555 (4)
C20.7148 (2)0.14275 (16)0.45982 (15)0.0696 (5)
H20.69200.20850.49040.084*
C30.8267 (2)0.10075 (19)0.46471 (17)0.0784 (6)
H30.88150.14010.49950.094*
C40.86049 (19)0.0018 (2)0.41950 (17)0.0772 (6)
H40.9363−0.02390.42610.093*
C50.78426 (17)−0.05788 (16)0.36581 (16)0.0654 (5)
H50.8061−0.12360.33480.079*
C60.67341 (15)−0.01605 (13)0.35970 (13)0.0541 (4)
C70.57370 (14)−0.05489 (12)0.30169 (13)0.0511 (4)
C80.47831 (15)0.02996 (12)0.33305 (12)0.0499 (4)
C90.36031 (15)0.03120 (13)0.30073 (13)0.0537 (4)
C100.28318 (18)0.12083 (16)0.31429 (16)0.0669 (5)
H100.30740.18340.34710.080*
C110.1726 (2)0.1165 (2)0.2795 (2)0.0818 (6)
H110.12140.17590.28850.098*
C120.1379 (2)0.0260 (2)0.23201 (19)0.0826 (6)
H120.06230.02350.20870.099*
C130.21224 (19)−0.06358 (19)0.21721 (19)0.0772 (6)
H130.1866−0.12530.18390.093*
C140.32193 (17)−0.06139 (15)0.25114 (16)0.0652 (5)
H140.3719−0.12170.24140.078*
C150.60383 (16)−0.04876 (14)0.17393 (14)0.0588 (4)
H1510.6698−0.09790.16300.071*
H1520.5396−0.07730.13570.071*
C160.63050 (16)0.06764 (15)0.12009 (13)0.0592 (4)
C170.5463 (2)0.13279 (18)0.06942 (16)0.0734 (5)
H170.47160.10670.06930.088*
C180.5709 (3)0.2378 (2)0.0179 (2)0.0979 (8)
H180.51220.2798−0.01830.117*
C190.6775 (3)0.2818 (2)0.0181 (2)0.1036 (9)
H190.69150.3532−0.01600.124*
C200.7618 (3)0.2195 (2)0.0687 (2)0.1025 (9)
H200.83560.24750.07060.123*
C210.7385 (2)0.1121 (2)0.11877 (17)0.0803 (6)
H210.79820.06930.15230.096*
C22−0.12773 (16)0.58215 (13)0.40787 (13)0.0560 (4)
C23−0.2149 (2)0.63966 (15)0.46520 (15)0.0696 (5)
H23−0.19880.70360.50000.084*
C24−0.3243 (2)0.59772 (18)0.46771 (17)0.0768 (6)
H24−0.38380.63310.50450.092*
C25−0.34455 (18)0.5030 (2)0.41531 (17)0.0753 (6)
H25−0.41830.47440.41800.090*
C26−0.25587 (17)0.44760 (17)0.35706 (16)0.0674 (5)
H26−0.27170.38390.32190.081*
C27−0.14607 (15)0.48919 (14)0.35319 (13)0.0555 (4)
C28−0.03287 (15)0.45255 (13)0.29552 (14)0.0534 (4)
C290.05241 (15)0.53448 (12)0.33312 (13)0.0520 (4)
C300.17631 (16)0.53540 (13)0.30252 (13)0.0552 (4)
C310.22917 (17)0.44455 (16)0.25119 (16)0.0667 (5)
H310.18450.38400.23780.080*
C320.34565 (19)0.4425 (2)0.22003 (19)0.0775 (6)
H320.37690.38140.18650.093*
C330.41384 (19)0.5308 (2)0.23898 (19)0.0807 (6)
H330.49140.53060.21880.097*
C340.3640 (2)0.62003 (19)0.28893 (19)0.0802 (6)
H340.40970.68010.30170.096*
C350.24684 (18)0.62393 (15)0.32136 (16)0.0667 (5)
H350.21690.68530.35520.080*
C36−0.03763 (17)0.46461 (16)0.16720 (15)0.0658 (5)
H3610.03890.45110.13720.079*
H362−0.08720.40750.14360.079*
C37−0.08058 (18)0.5768 (2)0.11951 (14)0.0698 (5)
C38−0.1895 (2)0.5879 (3)0.0830 (2)0.1048 (9)
H38−0.23810.52700.08900.126*
C39−0.2281 (3)0.6934 (4)0.0360 (3)0.1300 (13)
H39−0.30220.70110.00830.156*
C40−0.1597 (4)0.7850 (3)0.0297 (2)0.1215 (12)
H40−0.18780.85450.00010.146*
C41−0.0534 (3)0.7740 (3)0.0660 (2)0.1153 (10)
H41−0.00580.83560.06160.138*
C42−0.0136 (2)0.6711 (2)0.11025 (19)0.0886 (7)
H420.06160.66440.13510.106*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1094 (11)0.0420 (6)0.0622 (7)0.0093 (6)−0.0094 (7)−0.0169 (5)
O20.0737 (8)0.0372 (5)0.0614 (7)−0.0032 (5)−0.0124 (6)−0.0074 (5)
O30.1173 (11)0.0449 (6)0.0674 (8)−0.0154 (7)−0.0035 (7)−0.0198 (6)
O40.0762 (8)0.0421 (6)0.0721 (8)−0.0051 (5)0.0043 (6)−0.0153 (5)
N10.0815 (10)0.0375 (6)0.0462 (7)−0.0018 (6)−0.0049 (6)−0.0057 (5)
N20.0861 (10)0.0369 (6)0.0472 (7)−0.0038 (6)−0.0050 (7)−0.0061 (5)
C10.0762 (11)0.0465 (8)0.0440 (8)−0.0124 (8)−0.0081 (7)−0.0009 (6)
C20.0989 (15)0.0541 (10)0.0573 (10)−0.0246 (10)−0.0130 (10)−0.0049 (8)
C30.0884 (15)0.0805 (14)0.0672 (12)−0.0354 (12)−0.0210 (10)0.0015 (10)
C40.0696 (12)0.0928 (15)0.0682 (12)−0.0163 (11)−0.0189 (9)0.0065 (11)
C50.0699 (11)0.0632 (10)0.0631 (10)−0.0044 (9)−0.0128 (9)−0.0018 (8)
C60.0659 (10)0.0487 (8)0.0481 (8)−0.0080 (7)−0.0076 (7)−0.0033 (6)
C70.0633 (10)0.0385 (7)0.0526 (9)−0.0030 (7)−0.0087 (7)−0.0076 (6)
C80.0681 (10)0.0379 (7)0.0439 (8)−0.0024 (7)−0.0035 (7)−0.0044 (6)
C90.0639 (10)0.0481 (8)0.0477 (8)0.0011 (7)−0.0040 (7)0.0022 (6)
C100.0798 (13)0.0537 (10)0.0663 (11)0.0101 (9)−0.0030 (9)−0.0034 (8)
C110.0777 (14)0.0766 (14)0.0881 (15)0.0244 (11)−0.0061 (11)0.0034 (11)
C120.0699 (13)0.0929 (16)0.0826 (14)0.0056 (11)−0.0164 (11)0.0074 (12)
C130.0748 (13)0.0748 (13)0.0827 (14)−0.0044 (10)−0.0230 (11)−0.0054 (10)
C140.0683 (11)0.0548 (10)0.0729 (11)0.0040 (8)−0.0137 (9)−0.0072 (8)
C150.0707 (11)0.0566 (9)0.0514 (9)−0.0022 (8)−0.0059 (8)−0.0162 (7)
C160.0731 (11)0.0647 (10)0.0410 (8)−0.0062 (8)−0.0036 (7)−0.0099 (7)
C170.0818 (13)0.0790 (13)0.0582 (10)−0.0040 (10)−0.0081 (9)0.0018 (9)
C180.120 (2)0.0863 (16)0.0831 (16)0.0026 (15)−0.0070 (14)0.0172 (13)
C190.150 (3)0.0783 (15)0.0802 (16)−0.0247 (17)−0.0084 (16)0.0105 (12)
C200.117 (2)0.112 (2)0.0792 (15)−0.0545 (17)−0.0068 (14)0.0015 (14)
C210.0802 (14)0.0930 (15)0.0670 (12)−0.0187 (12)−0.0094 (10)0.0032 (11)
C220.0791 (11)0.0433 (8)0.0445 (8)0.0054 (7)−0.0003 (7)0.0000 (6)
C230.1010 (16)0.0503 (9)0.0556 (10)0.0192 (10)0.0048 (10)−0.0009 (7)
C240.0853 (14)0.0756 (13)0.0647 (11)0.0298 (11)0.0087 (10)0.0088 (10)
C250.0662 (12)0.0928 (15)0.0640 (11)0.0098 (10)−0.0006 (9)0.0066 (10)
C260.0694 (11)0.0719 (12)0.0611 (10)−0.0019 (9)−0.0027 (9)−0.0058 (9)
C270.0680 (10)0.0522 (9)0.0464 (8)0.0010 (7)−0.0018 (7)−0.0057 (7)
C280.0637 (10)0.0451 (8)0.0529 (9)−0.0041 (7)−0.0012 (7)−0.0121 (7)
C290.0722 (10)0.0395 (7)0.0446 (8)−0.0036 (7)−0.0050 (7)−0.0048 (6)
C300.0697 (11)0.0474 (8)0.0483 (8)−0.0096 (7)−0.0100 (7)0.0013 (7)
C310.0690 (11)0.0613 (10)0.0711 (11)−0.0095 (9)−0.0002 (9)−0.0101 (9)
C320.0707 (12)0.0822 (14)0.0799 (13)−0.0007 (10)−0.0004 (10)−0.0089 (11)
C330.0653 (12)0.0951 (16)0.0788 (13)−0.0150 (11)−0.0116 (10)0.0137 (12)
C340.0828 (14)0.0735 (13)0.0830 (14)−0.0281 (11)−0.0235 (11)0.0119 (11)
C350.0826 (13)0.0528 (9)0.0647 (11)−0.0149 (9)−0.0196 (9)0.0027 (8)
C360.0715 (11)0.0758 (12)0.0534 (10)−0.0076 (9)−0.0023 (8)−0.0229 (9)
C370.0718 (12)0.0986 (15)0.0402 (8)0.0051 (10)−0.0028 (8)−0.0143 (9)
C380.0843 (16)0.148 (3)0.0839 (16)0.0134 (16)−0.0179 (13)−0.0224 (16)
C390.101 (2)0.193 (4)0.095 (2)0.056 (3)−0.0255 (17)−0.017 (2)
C400.139 (3)0.143 (3)0.0747 (16)0.051 (2)0.0073 (18)0.0141 (18)
C410.138 (3)0.109 (2)0.0904 (18)0.0069 (19)−0.0045 (17)0.0307 (16)
C420.0984 (17)0.0911 (16)0.0722 (13)−0.0070 (13)−0.0114 (12)0.0182 (11)

Geometric parameters (Å, °)

O1—N11.3186 (18)C19—C201.341 (4)
O2—C71.4276 (18)C19—H190.9300
O2—H2O0.90 (3)C20—C211.400 (3)
O3—N21.2898 (17)C20—H200.9300
O4—C281.413 (2)C21—H210.9300
O4—H4O0.98 (3)C22—C271.367 (2)
N1—C81.306 (2)C22—C231.417 (3)
N1—C11.427 (2)C23—C241.378 (3)
N2—C291.347 (2)C23—H230.9300
N2—C221.449 (2)C24—C251.375 (3)
C1—C21.353 (2)C24—H240.9300
C1—C61.375 (2)C25—C261.422 (3)
C2—C31.385 (3)C25—H250.9300
C2—H20.9300C26—C271.381 (3)
C3—C41.394 (3)C26—H260.9300
C3—H30.9300C27—C281.550 (2)
C4—C51.361 (3)C28—C291.516 (2)
C4—H40.9300C28—C361.543 (2)
C5—C61.373 (3)C29—C301.481 (3)
C5—H50.9300C30—C351.393 (2)
C6—C71.473 (2)C30—C311.421 (3)
C7—C81.551 (2)C31—C321.400 (3)
C7—C151.569 (2)C31—H310.9300
C8—C91.434 (2)C32—C331.375 (3)
C9—C141.393 (2)C32—H320.9300
C9—C101.401 (2)C33—C341.383 (3)
C10—C111.365 (3)C33—H330.9300
C10—H100.9300C34—C351.412 (3)
C11—C121.344 (3)C34—H340.9300
C11—H110.9300C35—H350.9300
C12—C131.384 (3)C36—C371.491 (3)
C12—H120.9300C36—H3610.9700
C13—C141.349 (3)C36—H3620.9700
C13—H130.9300C37—C381.350 (3)
C14—H140.9300C37—C421.382 (3)
C15—C161.519 (2)C38—C391.403 (5)
C15—H1510.9700C38—H380.9300
C15—H1520.9700C39—C401.366 (5)
C16—C171.357 (3)C39—H390.9300
C16—C211.375 (3)C40—C411.319 (5)
C17—C181.384 (3)C40—H400.9300
C17—H170.9300C41—C421.371 (4)
C18—C191.359 (4)C41—H410.9300
C18—H180.9300C42—H420.9300
C7—O2—H2O106.0 (15)C21—C20—H20120.1
C28—O4—H4O106.1 (14)C16—C21—C20122.4 (2)
C8—N1—O1128.88 (16)C16—C21—H21118.8
C8—N1—C1109.39 (14)C20—C21—H21118.8
O1—N1—C1121.73 (14)C27—C22—C23124.02 (19)
O3—N2—C29128.03 (17)C27—C22—N2106.63 (15)
O3—N2—C22118.08 (14)C23—C22—N2129.34 (16)
C29—N2—C22113.89 (13)C24—C23—C22117.77 (19)
C2—C1—C6123.80 (19)C24—C23—H23121.1
C2—C1—N1125.66 (18)C22—C23—H23121.1
C6—C1—N1110.54 (14)C25—C24—C23119.37 (19)
C1—C2—C3114.6 (2)C25—C24—H24120.3
C1—C2—H2122.7C23—C24—H24120.3
C3—C2—H2122.7C24—C25—C26121.8 (2)
C2—C3—C4122.57 (18)C24—C25—H25119.1
C2—C3—H3118.7C26—C25—H25119.1
C4—C3—H3118.7C27—C26—C25119.44 (19)
C5—C4—C3121.1 (2)C27—C26—H26120.3
C5—C4—H4119.5C25—C26—H26120.3
C3—C4—H4119.5C22—C27—C26117.58 (17)
C4—C5—C6116.65 (19)C22—C27—C28109.74 (15)
C4—C5—H5121.7C26—C27—C28132.67 (16)
C6—C5—H5121.7O4—C28—C29114.21 (14)
C5—C6—C1121.32 (16)O4—C28—C36105.78 (13)
C5—C6—C7130.23 (16)C29—C28—C36109.38 (14)
C1—C6—C7108.35 (15)O4—C28—C27111.76 (14)
O2—C7—C6114.25 (13)C29—C28—C27102.27 (13)
O2—C7—C8111.51 (13)C36—C28—C27113.64 (15)
C6—C7—C8101.63 (12)N2—C29—C30127.86 (15)
O2—C7—C15107.19 (12)N2—C29—C28107.32 (15)
C6—C7—C15108.21 (14)C30—C29—C28124.79 (14)
C8—C7—C15114.13 (13)C35—C30—C31116.51 (18)
N1—C8—C9123.70 (15)C35—C30—C29122.62 (17)
N1—C8—C7109.85 (14)C31—C30—C29120.87 (15)
C9—C8—C7126.41 (13)C32—C31—C30122.72 (18)
C14—C9—C10118.79 (17)C32—C31—H31118.6
C14—C9—C8117.56 (15)C30—C31—H31118.6
C10—C9—C8123.64 (16)C33—C32—C31119.9 (2)
C11—C10—C9120.11 (19)C33—C32—H32120.0
C11—C10—H10119.9C31—C32—H32120.0
C9—C10—H10119.9C32—C33—C34118.2 (2)
C12—C11—C10119.8 (2)C32—C33—H33120.9
C12—C11—H11120.1C34—C33—H33120.9
C10—C11—H11120.1C33—C34—C35122.91 (19)
C11—C12—C13121.3 (2)C33—C34—H34118.5
C11—C12—H12119.3C35—C34—H34118.5
C13—C12—H12119.3C30—C35—C34119.7 (2)
C14—C13—C12120.0 (2)C30—C35—H35120.1
C14—C13—H13120.0C34—C35—H35120.1
C12—C13—H13120.0C37—C36—C28113.77 (14)
C13—C14—C9119.97 (19)C37—C36—H361108.8
C13—C14—H14120.0C28—C36—H361108.8
C9—C14—H14120.0C37—C36—H362108.8
C16—C15—C7115.08 (13)C28—C36—H362108.8
C16—C15—H151108.5H361—C36—H362107.7
C7—C15—H151108.5C38—C37—C42117.8 (3)
C16—C15—H152108.5C38—C37—C36119.2 (2)
C7—C15—H152108.5C42—C37—C36122.99 (19)
H151—C15—H152107.5C37—C38—C39118.7 (3)
C17—C16—C21116.76 (19)C37—C38—H38120.7
C17—C16—C15120.24 (18)C39—C38—H38120.7
C21—C16—C15123.00 (18)C40—C39—C38121.7 (3)
C16—C17—C18120.4 (2)C40—C39—H39119.1
C16—C17—H17119.8C38—C39—H39119.1
C18—C17—H17119.8C41—C40—C39119.5 (3)
C19—C18—C17122.5 (3)C41—C40—H40120.2
C19—C18—H18118.7C39—C40—H40120.2
C17—C18—H18118.7C40—C41—C42119.5 (3)
C20—C19—C18118.1 (2)C40—C41—H41120.3
C20—C19—H19120.9C42—C41—H41120.3
C18—C19—H19120.9C41—C42—C37122.8 (3)
C19—C20—C21119.8 (3)C41—C42—H42118.6
C19—C20—H20120.1C37—C42—H42118.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.192.817 (3)124
C14—H14···O20.932.342.996 (2)127
C31—H31···O40.932.473.107 (2)126
C35—H35···O30.932.372.989 (3)124
C11—H11···O40.932.483.404 (3)175
O2—H2O···O1i0.90 (2)1.88 (2)2.769 (2)174 (2)
O4—H4O···O3ii0.98 (2)1.82 (2)2.793 (2)178 (2)
C24—H24···O1ii0.932.483.310 (3)148
C3—H3···O3iii0.932.463.327 (3)154
C34—H34···O2iv0.932.493.415 (3)176

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2222).

References

  • Ali, S. A. & Wazeer, M. I. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 597–605.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Astolfi, P., Bruni, P., Greci, L., Stipa, P., Righi, L. & Rizzoli, C. (2003). Eur. J. Org. Chem. pp. 2626–2634.
  • Balasubramanian, N. (1985). Org. Prep. Proced. Int.17, 23–47.
  • Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). AED Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
  • Bernotas, R. C., Sabol, J. S., Sing, L. & Friedrich, D. (1999). Synlett, 5, 653–655.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bond, C. C. & Hooper, M. (1974). Synthesis, p. 443.
  • Bruni, P., Giorgini, E., Tommasi, G. & Greci, L. (1998). Tetrahedron, 54, 5305–5314.
  • Chiacchio, U., Saita, M. G., Crispino, L., Gumina, G., Mangiafico, S., Pistara, V., Romeo, G., Piperno, A. & De Clercq, E. (2006). Tetrahedron, 62, 1171–1181.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Greci, L., Tommasi, G., Bruni, P., Sgarabotto, P. & Righi, L. (2001). Eur. J. Org. Chem. pp. 3147–3153.
  • Janzen, E. G. (1971). Acc. Chem. Res.4, 31–40.
  • Jones, R. C. F., Martin, J. N. & Smith, P. (2000). Synlett, 7, 967–970.
  • Keller, E. (1997). SCHAKAL97 University of Freiburg, Germany.
  • Merino, P. (2005). Compt. Rend. Chim.8, 775–788.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Pisaneschi, F., Della Monica, C., Cordero, F. M. & Brandi, A. (2002). Tetrahedron Lett.43, 5711–5714.
  • Revuelta, J., Cicchi, S., de Maijere, A. & Brandi, A. (2008). Eur. J. Org. Chem. pp. 1085–1091.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tommasi, G., Bruni, P., Greci, L., Sgarabotto, P. & Righi, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 681–686.
  • Yamada, F., Kawanishi, A., Tomita, A. & Somei, M. (2003). Arkivoc, viii, 102–111.
  • Zubarev, V. E. (1979). Russ. Chem. Rev.48, 1361–1392.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography