PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2171.
Published online 2010 July 31. doi:  10.1107/S1600536810029879
PMCID: PMC3007229

(Z)-N-{3-[1-(4-Chloro­phen­yl)eth­yl]thia­zolidin-2-yl­idene}cyanamide

Abstract

The title compound, C12H12ClN3S, features a thia­zolyl ring having an envelope conformation with the –CH2– group bonded to the S atom forming the flap. The C=N double bond has a Z configuration. The crystal structure shows inter­molecular C—H(...)S hydrogen bonds.

Related literature

For the biological activity of thia­zole componds, see: Hense et al. (2002 [triangle]). For a related structure, see: Cunico et al. (2007 [triangle]). For the synthesis, see: Jeschke et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2171-scheme1.jpg

Experimental

Crystal data

  • C12H12ClN3S
  • M r = 265.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2171-efi1.jpg
  • a = 5.8850 (12) Å
  • b = 7.5965 (15) Å
  • c = 28.273 (6) Å
  • V = 1264.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 113 K
  • 0.14 × 0.12 × 0.10 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.940, T max = 0.957
  • 9219 measured reflections
  • 3019 independent reflections
  • 2640 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.113
  • S = 1.06
  • 3019 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 6200 Friedel pairs
  • Flack parameter: −0.09 (9)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810029879/ng5002sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029879/ng5002Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, compounds containing the 2-(thiazolidin-2-ylidene)malononitrile group have attracted much interest because its containing a thiazole ring system are well known as efficient insecticide in pesticides, and have good plant-growth regulatory activity for a wide variety of crops e.g. thiacloprid (Hense et al., 2002). A new compound, (I), which containing thiazole ring has higher insecticide activity. We report here the crystal structure and synthesis of (I).

In (I) (Fig. 1), the bond lengths and angles are normal and in a agreement with those common to a previously reported structure (Cunico, et al., 2007). The thiazole ring is in and envelope conformation with the –CH2– group bonded to the S atom forming the flap. The carbon-nitrogen double bond of the molecule is trans. Flack x parameter = -0.0865 (with e.s.d. 0.0872) (Flack, 1983). The crystal structure involves C—H···S intermolecular hydrogen bonds.

Experimental

(Z)-(thiazolidin-2-ylideneamino)formonitrile 1.27 g (10.0 mmol) and potassium carbonate (10.0 mmol) were dissolved in N,N-dimethylformamide(DMF) (15 ml) which was stirred 0.5 h at room temperature. Then 1-chloro-4-(1-chloroethyl)benzene 1.75 g (10.0 mmol) was added dropwising within 2 h at 283 K. The mixture was stirred for 8 h at 428 K. Upon cooling at room temperature. Then water (20 ml) was added. The mixture was extracted with CH2Cl2 (15 ml) and the organic layer was washed with water and dried over anhydrous sodium sulfate. The excess CH2Cl2 was removed on a water vacuum pump to obtain the oily product. Crystallized from methanol to afford the title compound 2.0 g (76% yield) (Jeschke, et al., 2002.). Single crystals suitable for X-ray measurement were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement

All C-bound H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for the aryl and 1.5 Ueq(C) for methyl H atoms. Friedel pairs = 6200.

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C12H12ClN3SF(000) = 552
Mr = 265.76Dx = 1.397 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 193 reflections
a = 5.8850 (12) Åθ = 1.4–27.9°
b = 7.5965 (15) ŵ = 0.45 mm1
c = 28.273 (6) ÅT = 113 K
V = 1264.0 (4) Å3Block, white
Z = 40.14 × 0.12 × 0.10 mm

Data collection

Rigaku Saturn diffractometer3019 independent reflections
Radiation source: rotating anode2640 reflections with I > 2σ(I)
confocalRint = 0.062
ω scansθmax = 27.9°, θmin = 1.4°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −7→7
Tmin = 0.940, Tmax = 0.957k = −9→8
9219 measured reflectionsl = −29→37

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0295P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3019 reflectionsΔρmax = 0.38 e Å3
155 parametersΔρmin = −0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 6200 Friedel pairs
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.31420 (16)−0.62970 (7)0.98241 (2)0.0438 (2)
S10.18444 (12)0.16944 (8)0.77090 (2)0.03081 (17)
N20.2773 (4)0.3380 (3)0.85392 (7)0.0279 (4)
C90.3024 (4)0.1982 (3)0.82718 (8)0.0238 (5)
C10.2990 (4)−0.1331 (3)0.93777 (8)0.0267 (5)
H10.2024−0.03680.94070.032*
N10.4250 (4)0.0594 (2)0.84129 (6)0.0255 (5)
C60.4992 (4)−0.1158 (3)0.91192 (8)0.0242 (5)
C70.5466 (4)0.0572 (3)0.88698 (8)0.0257 (5)
H70.48060.15070.90650.031*
C80.7950 (5)0.1029 (4)0.87970 (9)0.0369 (6)
H8A0.80640.21250.86300.055*
H8B0.86720.01170.86160.055*
H8C0.86860.11350.90990.055*
C120.1462 (5)0.4672 (3)0.83801 (8)0.0294 (6)
C20.2409 (4)−0.2905 (3)0.95914 (8)0.0288 (5)
H20.1055−0.30110.97590.035*
C40.5886 (5)−0.4192 (3)0.93042 (9)0.0316 (6)
H40.6860−0.51520.92840.038*
C30.3874 (5)−0.4315 (3)0.95515 (8)0.0285 (5)
N30.0347 (5)0.5868 (3)0.82737 (8)0.0414 (6)
C50.6432 (5)−0.2610 (3)0.90865 (8)0.0292 (6)
H50.7778−0.25180.89160.035*
C110.4588 (7)−0.0759 (4)0.80600 (9)0.0479 (8)
H11A0.6166−0.07690.79610.058*
H11B0.4235−0.19010.81950.058*
C100.3144 (8)−0.0437 (4)0.76555 (12)0.0648 (12)
H10A0.1977−0.13360.76380.078*
H10B0.4039−0.04880.73680.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0702 (5)0.0288 (3)0.0324 (4)−0.0048 (3)0.0066 (4)0.0021 (3)
S10.0384 (4)0.0355 (3)0.0185 (3)−0.0011 (3)−0.0028 (3)0.0002 (2)
N20.0319 (11)0.0266 (9)0.0252 (11)−0.0013 (9)−0.0015 (9)−0.0014 (8)
C90.0227 (11)0.0302 (11)0.0186 (11)−0.0047 (10)0.0030 (10)0.0020 (8)
C10.0253 (12)0.0304 (11)0.0246 (12)0.0062 (11)0.0008 (10)0.0000 (9)
N10.0305 (11)0.0255 (10)0.0204 (11)0.0005 (9)−0.0029 (9)−0.0032 (8)
C60.0232 (11)0.0293 (11)0.0201 (12)−0.0007 (9)−0.0038 (9)−0.0022 (9)
C70.0267 (12)0.0289 (12)0.0215 (13)−0.0010 (10)−0.0029 (10)−0.0016 (9)
C80.0319 (14)0.0419 (14)0.0368 (16)−0.0080 (13)−0.0029 (12)0.0067 (12)
C120.0371 (15)0.0332 (12)0.0179 (12)−0.0011 (11)0.0008 (10)−0.0010 (9)
C20.0284 (13)0.0332 (12)0.0249 (13)−0.0021 (10)0.0014 (10)−0.0010 (10)
C40.0376 (14)0.0252 (11)0.0319 (14)0.0079 (11)−0.0017 (11)−0.0064 (10)
C30.0386 (14)0.0260 (11)0.0210 (13)−0.0031 (11)−0.0019 (10)−0.0016 (10)
N30.0575 (17)0.0394 (12)0.0273 (13)0.0087 (12)−0.0025 (11)−0.0006 (10)
C50.0296 (14)0.0329 (11)0.0252 (14)0.0034 (11)0.0024 (10)−0.0026 (10)
C110.069 (2)0.0489 (16)0.0254 (15)0.0203 (17)−0.0048 (14)−0.0132 (13)
C100.097 (3)0.0508 (18)0.046 (2)0.027 (2)−0.038 (2)−0.0243 (14)

Geometric parameters (Å, °)

Cl1—C31.746 (2)C8—H8A0.9600
S1—C91.750 (2)C8—H8B0.9600
S1—C101.797 (3)C8—H8C0.9600
N2—C91.311 (3)C12—N31.161 (3)
N2—C121.327 (3)C2—C31.380 (4)
C9—N11.338 (3)C2—H20.9300
C1—C21.383 (3)C4—C31.378 (4)
C1—C61.393 (3)C4—C51.388 (3)
C1—H10.9300C4—H40.9300
N1—C111.446 (3)C5—H50.9300
N1—C71.477 (3)C11—C101.446 (4)
C6—C51.394 (3)C11—H11A0.9700
C6—C71.517 (3)C11—H11B0.9700
C7—C81.516 (4)C10—H10A0.9700
C7—H70.9800C10—H10B0.9700
C9—S1—C1091.16 (13)N3—C12—N2174.7 (3)
C9—N2—C12118.0 (2)C3—C2—C1118.8 (2)
N2—C9—N1121.8 (2)C3—C2—H2120.6
N2—C9—S1125.49 (18)C1—C2—H2120.6
N1—C9—S1112.73 (17)C3—C4—C5118.9 (2)
C2—C1—C6121.3 (2)C3—C4—H4120.6
C2—C1—H1119.3C5—C4—H4120.6
C6—C1—H1119.3C4—C3—C2121.7 (2)
C9—N1—C11115.4 (2)C4—C3—Cl1119.64 (19)
C9—N1—C7122.06 (19)C2—C3—Cl1118.6 (2)
C11—N1—C7121.9 (2)C4—C5—C6121.0 (2)
C1—C6—C5118.3 (2)C4—C5—H5119.5
C1—C6—C7118.8 (2)C6—C5—H5119.5
C5—C6—C7122.9 (2)C10—C11—N1110.1 (2)
N1—C7—C8110.2 (2)C10—C11—H11A109.6
N1—C7—C6109.10 (19)N1—C11—H11A109.6
C8—C7—C6116.0 (2)C10—C11—H11B109.6
N1—C7—H7107.0N1—C11—H11B109.6
C8—C7—H7107.0H11A—C11—H11B108.1
C6—C7—H7107.0C11—C10—S1109.6 (2)
C7—C8—H8A109.5C11—C10—H10A109.7
C7—C8—H8B109.5S1—C10—H10A109.7
H8A—C8—H8B109.5C11—C10—H10B109.7
C7—C8—H8C109.5S1—C10—H10B109.7
H8A—C8—H8C109.5H10A—C10—H10B108.2
H8B—C8—H8C109.5
C12—N2—C9—N1−177.6 (2)C1—C6—C7—C8152.3 (2)
C12—N2—C9—S12.1 (3)C5—C6—C7—C8−30.3 (3)
C10—S1—C9—N2179.1 (3)C9—N2—C12—N3177 (100)
C10—S1—C9—N1−1.1 (2)C6—C1—C2—C31.1 (4)
N2—C9—N1—C11−173.2 (2)C5—C4—C3—C2−0.6 (4)
S1—C9—N1—C117.0 (3)C5—C4—C3—Cl1179.5 (2)
N2—C9—N1—C7−2.4 (4)C1—C2—C3—C4−0.2 (4)
S1—C9—N1—C7177.89 (18)C1—C2—C3—Cl1179.7 (2)
C2—C1—C6—C5−1.1 (4)C3—C4—C5—C60.6 (4)
C2—C1—C6—C7176.5 (2)C1—C6—C5—C40.2 (4)
C9—N1—C7—C8−98.3 (3)C7—C6—C5—C4−177.3 (2)
C11—N1—C7—C872.0 (3)C9—N1—C11—C10−10.7 (4)
C9—N1—C7—C6133.2 (2)C7—N1—C11—C10178.5 (3)
C11—N1—C7—C6−56.5 (3)N1—C11—C10—S19.2 (4)
C1—C6—C7—N1−82.5 (3)C9—S1—C10—C11−4.8 (3)
C5—C6—C7—N194.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···S1i0.972.873.799 (4)160

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5002).

References

  • Cunico, W., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o411–o414. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hense, A., Fischer, A. & Gesing, E. R. (2002). WO Patent 2002096872.
  • Jeschke, P., Beck, M. E. & Kraemer, W. (2002). German Patent 10119423.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography