PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1954.
Published online 2010 July 7. doi:  10.1107/S1600536810020672
PMCID: PMC3007227

2-[1-(tert-But­oxy­carbonyl)­pyrrolidin-2-yl]-4,4,5,5-tetra­methyl-4,5-dihydro-1H-imidazole-1-oxyl 3-oxide

Abstract

In the title compound, C16H28N3O4, the plane of the pyrrolidine ring system is twisted with respect to the plane of the nitronyl nitroxide unit, making a dihedral angle of 79.80 (6)°. The crystal structure is stabilized by C—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Ullman et al. (1974 [triangle]). For the properties of nitronyl nitroxide radicals, see: Iqbal et al. (2009 [triangle]); Qin et al. (2009 [triangle]); Tanaka et al. (2007 [triangle]); Soule et al. (2007 [triangle]). For puckering parameters, see: Cremer & Pople (1975).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1954-scheme1.jpg

Experimental

Crystal data

  • C16H28N3O4
  • M r = 326.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1954-efi1.jpg
  • a = 6.1016 (12) Å
  • b = 10.392 (2) Å
  • c = 14.488 (3) Å
  • β = 101.312 (3)°
  • V = 900.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.36 × 0.28 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • 4494 measured reflections
  • 1686 independent reflections
  • 1347 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.104
  • S = 0.97
  • 1686 reflections
  • 215 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek,2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020672/dn2566sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020672/dn2566Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of China (grant Nos. 20972189, 20802092, 20802091) for financial support.

supplementary crystallographic information

Comment

Nitronyl nitroxide radical is a class of important functionalized molecule, which has characteristics of magnetism, anticancer, antiradiation and antioxidation, etc (Iqbal, et al., 2009; Qin, et al., 2009; Tanaka, et al., 2007; Soule, et al., 2007). The title compound has been be used for coordination with many metalcations, such as Mn2+, Cu2+ and Ni2+ leading to form some molecule based magentic materials. The molecular structure of the title compound is shown in Fig1. The pyrrolidine ring and the nitronyl nitroxide ring are twisted with respect to each other making a dihedral angle of 79.80 (6)°. The crystal structure is stabilized by C—H···O hydrogen bonds (Table 1).

Experimental

2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and tert-butyl-2-(hydroxymethyl) pyrrolidine-1-carboxylate (2.01 g, 10.0 mmol) were dissolved in methanol (Ullman, et al., 1974). The reaction was stirred for 15 h at reflux temperature, then cooled to room temperature and filtered. The white powder was washed by methanol and suspended in a mixed solution of dichloromethane (30.0 ml) and water (30.0 ml). Then the reaction mixture was added to an aqueous solution of NaIO4 and stirred for 15 min in ice bath to give a blue solution. The aqueous phase was extracted with CH2Cl2 and the organic layer was combined and dried over MgSO4. Then the solvent was removed to give a dark red residue which was purified by a flash column chromatography with the elution of n-hexane/ ethyl acetate (1:3) to yield the title compound (I) as a dark blue powder. Single crystals of compound (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 1 to 1).

Refinement

In both structures all the H atoms were discernible in the difference Fourier maps. However, they were constrained by riding model approximation. C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl and Uiso Haryl are 1.5 Ueq (C) and 1.2 Ueq (C), respectively.

Figures

Fig. 1.
Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C16H28N3O4F(000) = 354
Mr = 326.41Dx = 1.203 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1546 reflections
a = 6.1016 (12) Åθ = 2.4–21.6°
b = 10.392 (2) ŵ = 0.09 mm1
c = 14.488 (3) ÅT = 296 K
β = 101.312 (3)°Block, red
V = 900.8 (3) Å30.36 × 0.28 × 0.17 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1347 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
graphiteθmax = 25.1°, θmin = 2.4°
phi and ω scansh = −7→7
4494 measured reflectionsk = −6→12
1686 independent reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104w = 1/[σ2(Fo2) + (0.0673P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.18 e Å3
215 parametersΔρmin = −0.19 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (5)

Special details

Experimental. The absolute structure cannot be determined beacuse there are no atoms heaver than silicon in the molecular.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.0929 (4)0.3494 (3)0.78508 (14)0.0442 (6)
N20.3330 (4)0.4804 (2)0.86782 (15)0.0434 (6)
N30.1712 (4)0.6757 (2)0.71424 (15)0.0471 (6)
O10.3991 (4)0.7310 (3)0.61493 (15)0.0669 (7)
O2−0.0793 (3)0.3080 (2)0.72759 (14)0.0615 (6)
O30.4286 (4)0.5857 (2)0.90224 (15)0.0621 (6)
O40.2361 (4)0.5320 (2)0.61039 (13)0.0575 (6)
C10.2011 (6)0.3558 (4)0.5093 (2)0.0656 (9)
H1A0.25620.30440.56400.098*
H1B0.24080.31600.45500.098*
H1C0.04140.36250.50040.098*
C20.5524 (6)0.4831 (4)0.5354 (3)0.0718 (10)
H2A0.61150.56890.54340.108*
H2B0.59340.44480.48090.108*
H2C0.61230.43270.59000.108*
C30.1978 (7)0.5764 (4)0.4421 (2)0.0799 (12)
H3A0.03870.57820.43750.120*
H3B0.23160.54500.38420.120*
H3C0.25690.66170.45410.120*
C40.3028 (5)0.4878 (3)0.52248 (18)0.0488 (8)
C50.2803 (5)0.6526 (3)0.64280 (19)0.0482 (7)
C60.1631 (6)0.8032 (3)0.7549 (2)0.0556 (8)
H6A0.17050.86990.70880.067*
H6B0.28420.81530.80860.067*
C7−0.0620 (7)0.8035 (3)0.7848 (3)0.0690 (10)
H9A−0.06230.86300.83640.083*
H9B−0.18100.82690.73270.083*
C8−0.0877 (6)0.6663 (3)0.8153 (2)0.0576 (9)
H10A−0.24430.64370.80840.069*
H10B−0.01500.65420.88060.069*
C90.0256 (4)0.5839 (3)0.74985 (18)0.0417 (7)
H11−0.08780.55180.69740.050*
C100.1523 (4)0.4731 (3)0.79995 (17)0.0385 (6)
C110.2665 (5)0.2596 (3)0.8383 (2)0.0506 (8)
C120.4042 (6)0.2131 (4)0.7676 (2)0.0705 (11)
H15A0.30880.16830.71720.106*
H15B0.51940.15600.79830.106*
H15C0.47090.28560.74270.106*
C130.1549 (6)0.1467 (4)0.8763 (3)0.0692 (10)
H16A0.05990.17750.91700.104*
H16B0.26690.09090.91100.104*
H16C0.06700.09990.82490.104*
C140.3947 (4)0.3532 (3)0.91403 (18)0.0450 (7)
C150.6454 (5)0.3379 (4)0.9356 (2)0.0635 (9)
H18A0.70200.34640.87860.095*
H18B0.68330.25440.96250.095*
H18C0.71050.40310.97950.095*
C160.3053 (5)0.3565 (4)1.00551 (19)0.0596 (9)
H17A0.14570.36580.99110.089*
H17B0.37020.42791.04320.089*
H17C0.34390.27781.03960.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0490 (13)0.0398 (15)0.0440 (12)−0.0025 (12)0.0091 (10)0.0019 (11)
N20.0451 (13)0.0403 (15)0.0455 (12)−0.0073 (13)0.0104 (10)0.0000 (12)
N30.0717 (15)0.0350 (13)0.0405 (11)−0.0039 (13)0.0252 (11)−0.0009 (11)
O10.0936 (17)0.0510 (14)0.0679 (13)−0.0193 (14)0.0449 (12)−0.0023 (12)
O20.0602 (12)0.0519 (15)0.0653 (12)−0.0125 (11)−0.0050 (10)−0.0020 (11)
O30.0670 (13)0.0529 (15)0.0627 (12)−0.0176 (13)0.0034 (10)−0.0058 (12)
O40.0907 (15)0.0449 (13)0.0470 (11)−0.0064 (13)0.0380 (10)−0.0074 (10)
C10.087 (2)0.058 (2)0.0559 (17)−0.002 (2)0.0249 (15)−0.0131 (17)
C20.072 (2)0.069 (3)0.078 (2)0.002 (2)0.0212 (16)−0.020 (2)
C30.113 (3)0.077 (3)0.0487 (17)0.017 (2)0.0119 (17)0.0065 (19)
C40.0631 (17)0.052 (2)0.0350 (13)0.0042 (16)0.0191 (11)−0.0044 (14)
C50.0683 (19)0.0390 (18)0.0405 (13)−0.0040 (16)0.0183 (13)−0.0013 (14)
C60.085 (2)0.0382 (17)0.0477 (15)−0.0046 (18)0.0227 (15)−0.0050 (14)
C70.102 (3)0.048 (2)0.0658 (19)0.009 (2)0.0381 (18)0.0000 (17)
C80.072 (2)0.051 (2)0.0579 (17)0.0066 (18)0.0331 (15)0.0045 (16)
C90.0506 (15)0.0379 (16)0.0382 (12)−0.0024 (14)0.0123 (11)0.0002 (13)
C100.0457 (14)0.0363 (16)0.0358 (12)−0.0047 (14)0.0141 (11)0.0014 (13)
C110.0507 (17)0.043 (2)0.0583 (17)0.0013 (15)0.0113 (13)0.0030 (14)
C120.073 (2)0.069 (3)0.072 (2)0.013 (2)0.0214 (17)−0.014 (2)
C130.077 (2)0.045 (2)0.084 (2)−0.0033 (19)0.0152 (18)0.0179 (19)
C140.0482 (15)0.0446 (18)0.0428 (14)0.0008 (15)0.0104 (11)0.0058 (14)
C150.0514 (16)0.071 (3)0.0672 (18)0.0057 (18)0.0081 (14)0.0002 (19)
C160.0642 (17)0.071 (2)0.0466 (15)0.0057 (19)0.0187 (13)0.0097 (17)

Geometric parameters (Å, °)

N1—O21.281 (3)C6—H6B0.9700
N1—C101.341 (4)C7—C81.511 (5)
N1—C111.506 (4)C7—H9A0.9700
N2—O31.293 (3)C7—H9B0.9700
N2—C101.328 (3)C8—C91.538 (4)
N2—C141.495 (4)C8—H10A0.9700
N3—C51.357 (4)C8—H10B0.9700
N3—C61.455 (4)C9—C101.494 (4)
N3—C91.464 (4)C9—H110.9800
O1—C51.211 (4)C11—C131.513 (5)
O4—C51.347 (4)C11—C121.526 (4)
O4—C41.484 (3)C11—C141.557 (4)
C1—C41.502 (5)C12—H15A0.9600
C1—H1A0.9600C12—H15B0.9600
C1—H1B0.9600C12—H15C0.9600
C1—H1C0.9600C13—H16A0.9600
C2—C41.499 (5)C13—H16B0.9600
C2—H2A0.9600C13—H16C0.9600
C2—H2B0.9600C14—C151.509 (4)
C2—H2C0.9600C14—C161.529 (4)
C3—C41.523 (4)C15—H18A0.9600
C3—H3A0.9600C15—H18B0.9600
C3—H3B0.9600C15—H18C0.9600
C3—H3C0.9600C16—H17A0.9600
C6—C71.518 (5)C16—H17B0.9600
C6—H6A0.9700C16—H17C0.9600
O2—N1—C10126.0 (2)C7—C8—H10A110.7
O2—N1—C11122.0 (3)C9—C8—H10A110.7
C10—N1—C11111.8 (2)C7—C8—H10B110.7
O3—N2—C10125.4 (2)C9—C8—H10B110.7
O3—N2—C14121.35 (19)H10A—C8—H10B108.8
C10—N2—C14112.4 (2)N3—C9—C10112.4 (2)
C5—N3—C6122.0 (3)N3—C9—C8103.4 (2)
C5—N3—C9125.2 (2)C10—C9—C8112.4 (2)
C6—N3—C9112.3 (2)N3—C9—H11109.5
C5—O4—C4121.2 (2)C10—C9—H11109.5
C4—C1—H1A109.5C8—C9—H11109.5
C4—C1—H1B109.5N2—C10—N1109.4 (2)
H1A—C1—H1B109.5N2—C10—C9126.2 (3)
C4—C1—H1C109.5N1—C10—C9124.3 (2)
H1A—C1—H1C109.5N1—C11—C13110.2 (2)
H1B—C1—H1C109.5N1—C11—C12106.1 (2)
C4—C2—H2A109.5C13—C11—C12110.2 (3)
C4—C2—H2B109.5N1—C11—C14100.3 (2)
H2A—C2—H2B109.5C13—C11—C14115.4 (3)
C4—C2—H2C109.5C12—C11—C14113.9 (2)
H2A—C2—H2C109.5C11—C12—H15A109.5
H2B—C2—H2C109.5C11—C12—H15B109.5
C4—C3—H3A109.5H15A—C12—H15B109.5
C4—C3—H3B109.5C11—C12—H15C109.5
H3A—C3—H3B109.5H15A—C12—H15C109.5
C4—C3—H3C109.5H15B—C12—H15C109.5
H3A—C3—H3C109.5C11—C13—H16A109.5
H3B—C3—H3C109.5C11—C13—H16B109.5
O4—C4—C2110.3 (2)H16A—C13—H16B109.5
O4—C4—C1102.5 (2)C11—C13—H16C109.5
C2—C4—C1111.7 (3)H16A—C13—H16C109.5
O4—C4—C3108.9 (3)H16B—C13—H16C109.5
C2—C4—C3112.3 (3)N2—C14—C15110.0 (3)
C1—C4—C3110.7 (3)N2—C14—C16105.5 (3)
O1—C5—O4127.0 (3)C15—C14—C16110.0 (2)
O1—C5—N3123.4 (3)N2—C14—C11100.9 (2)
O4—C5—N3109.6 (3)C15—C14—C11115.4 (3)
N3—C6—C7102.8 (3)C16—C14—C11114.1 (2)
N3—C6—H6A111.2C14—C15—H18A109.5
C7—C6—H6A111.2C14—C15—H18B109.5
N3—C6—H6B111.2H18A—C15—H18B109.5
C7—C6—H6B111.2C14—C15—H18C109.5
H6A—C6—H6B109.1H18A—C15—H18C109.5
C8—C7—C6103.5 (3)H18B—C15—H18C109.5
C8—C7—H9A111.1C14—C16—H17A109.5
C6—C7—H9A111.1C14—C16—H17B109.5
C8—C7—H9B111.1H17A—C16—H17B109.5
C6—C7—H9B111.1C14—C16—H17C109.5
H9A—C7—H9B109.0H17A—C16—H17C109.5
C7—C8—C9105.0 (2)H17B—C16—H17C109.5
C5—O4—C4—C266.4 (4)C11—N1—C10—C9173.9 (2)
C5—O4—C4—C1−174.5 (3)N3—C9—C10—N250.4 (3)
C5—O4—C4—C3−57.3 (4)C8—C9—C10—N2−65.8 (4)
C4—O4—C5—O1−10.5 (5)N3—C9—C10—N1−132.5 (3)
C4—O4—C5—N3169.9 (2)C8—C9—C10—N1111.3 (3)
C6—N3—C5—O18.7 (5)O2—N1—C11—C13−43.4 (4)
C9—N3—C5—O1179.8 (3)C10—N1—C11—C13141.6 (3)
C6—N3—C5—O4−171.7 (3)O2—N1—C11—C1275.8 (3)
C9—N3—C5—O4−0.7 (4)C10—N1—C11—C12−99.2 (3)
C5—N3—C6—C7148.7 (3)O2—N1—C11—C14−165.5 (2)
C9—N3—C6—C7−23.4 (3)C10—N1—C11—C1419.5 (3)
N3—C6—C7—C834.8 (3)O3—N2—C14—C15−48.6 (3)
C6—C7—C8—C9−34.1 (3)C10—N2—C14—C15141.3 (2)
C5—N3—C9—C1069.1 (3)O3—N2—C14—C1670.0 (3)
C6—N3—C9—C10−119.1 (3)C10—N2—C14—C16−100.1 (3)
C5—N3—C9—C8−169.4 (3)O3—N2—C14—C11−171.0 (2)
C6—N3—C9—C82.4 (3)C10—N2—C14—C1119.0 (3)
C7—C8—C9—N319.9 (3)N1—C11—C14—N2−21.2 (2)
C7—C8—C9—C10141.4 (3)C13—C11—C14—N2−139.5 (3)
O3—N2—C10—N1−177.0 (2)C12—C11—C14—N291.6 (3)
C14—N2—C10—N1−7.4 (3)N1—C11—C14—C15−139.7 (3)
O3—N2—C10—C90.5 (4)C13—C11—C14—C15102.0 (3)
C14—N2—C10—C9170.0 (2)C12—C11—C14—C15−26.8 (4)
O2—N1—C10—N2176.7 (2)N1—C11—C14—C1691.4 (3)
C11—N1—C10—N2−8.6 (3)C13—C11—C14—C16−26.9 (4)
O2—N1—C10—C9−0.8 (4)C12—C11—C14—C16−155.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.962.473.043 (5)118
C3—H3C···O10.962.433.025 (4)120
C9—H11···O20.982.572.942 (4)102
C16—H17C···O3i0.962.483.390 (4)157

Symmetry codes: (i) −x+1, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2566).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Iqbal, A. L., Anirban, P. & Sambhu, N. D. (2009). J. Phys. Chem. A.113, 1595–4673. [PubMed]
  • Qin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511–514.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med.42, 1632–1650. [PMC free article] [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021–2026.
  • Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J Am Chem Soc 96, 7049–7053.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography