PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m973.
Published online 2010 July 21. doi:  10.1107/S1600536810027030
PMCID: PMC3007223

Poly[tetra-μ1,1-azido-bis­(μ2-pyrimidine-2-carboxyl­ato)tricopper(II)]

Abstract

In the title compound, [Cu3(C5H3N2O2)2(N3)4]n, one of the CuII atoms lies on an inversion centre and is octa­hedrally coordinated by two bidentate chelating pyrimidine-2-carboxyl­ate ligands and two azide anions, each of which gives an N:N-bridge to the second inversion-related CuII centre in the formula unit. The second CuII atom is five-coordinated with a distorted square-pyramidal coordination sphere comprising a single bidentate chelating pyrimidine-2-carboxyl­ate anion and three azide N anions, two of which doubly bridge centrosymmetric CuII centres, giving a two-dimensional network structure extending parallel to (010).

Related literature

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic inter­actions effectively between the copper ions, see: Zhao et al. (2009 [triangle]). The structures of the complexes are dependant on the co-ligand and conditions employed in the synthesis, see: Zeng et al. (2009 [triangle]). For azide complexes with 2,2′-bipyrimidine or oxalate as co-ligands, see: Cortes et al. (1996 [triangle]); Escuer et al. (1994 [triangle]) and for an azide complex with a pyrimidine-2-carboxyl­ate ligand, see: Suarez-Varela et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m973-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C5H3N2O2)2(N3)4]
  • M r = 604.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m973-efi1.jpg
  • a = 7.4743 (15) Å
  • b = 14.997 (3) Å
  • c = 9.479 (4) Å
  • β = 122.31 (2)°
  • V = 898.0 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.59 mm−1
  • T = 293 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Rigaku SCXmini CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.625, T max = 1.000
  • 7028 measured reflections
  • 1572 independent reflections
  • 1305 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.134
  • S = 1.24
  • 1572 reflections
  • 151 parameters
  • H-atom parameters constrained
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO (Rigaku, 1998 [triangle]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810027030/zs2045sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810027030/zs2045Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

supplementary crystallographic information

Comment

Copper azide complexes have attracted much attention in recent years because the azide anions can mediate magnetic interactions effectively between the copper ions (Zhao et al., 2009). The structures of those complexes are dependant on the co-ligand and conditions employed in the synthesis (Zeng et al., 2009). Some azide complexes with 2,2'-bipyrimidine or oxalate as co-ligands have been reported (Cortes et al., 1996); Escuer et al., 1994). The pyrimidine-2-carboxylate ligand can be considered as the combination of 2,2'-bipyrimidine and oxalate, and a new metal azide complex with it as ligand has been reported (Suarez-Varela et al., 2008). In this work we report a new copper(II) azide complex with pyrimidine-2-carboxylate as co-ligand, [Cu3(C5H3N2O2)2(N3)4]n (I), prepared under hydrothermal conditions and its structure is reported here.

In the asymmetric units of the title compound, there are one and a half copper(II) cations, two azido anions and two pyrimidine-2-carboxylate ligands (Fig. 1). One of the cations (Cu2) lies on an inversion centre and is octahedrally coordinated by two bidentate chelate pyrimidine-2-carboxylato-N,O ligands and two azido anions, each giving an N bridge to the inversion-related Cu1 centres in the formula unit [Cu2—Cu1, 3.4652 (14) Å]. A second weak contact between a carboxyl O (O1) to Cu1 is also present [Cu1···O1, 2.950 (4) Å] but is too long to be considered a bridging (Cu–O) bond. The coordination sphere about Cu1 is five-coordinate with a distorted square pyramidal coordination sphere comprising a single bidentate chelate pyrimidine-2-carboxylate anion and three azido N anions, one bridging to Cu2, the other two giving double N bridges to centrosymmetrically related Cu centres [Cu1—Cu1iii, 3.329 (2) Å] [symmetry code: (iii) x -1, y, z]. Structure extension results in a two-dimensional network (Figs. 2, 3).

Experimental

A mixture of copper(II) nitrate (1.5mmol) and sodium azide (2 mmol), and pyrimidine-2-carboxylic acid (0.5 mmol) in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Black crystals of the title complex were collected after the bomb was allowed to cool to room temperature (yield 20% based on Cu). Caution: azides may be explosive: although we have had no problems in this work, only small quantities should be prepared and should be handled with great caution.

Refinement

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination mode and linkage of the metal ions and ligands in (I). Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x + 2, -y, -z; (B) -x + 1, -y, -z - 1; (C) -x + 1, -y, -z; (D) x - ...
Fig. 2.
The two-dimensional network structure of (I).
Fig. 3.
The packing mode of the complex in the unit cell.

Crystal data

[Cu3(C5H3N2O2)2(N3)4]F(000) = 594
Mr = 604.96Dx = 2.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7433 reflections
a = 7.4743 (15) Åθ = 3.2–27.5°
b = 14.997 (3) ŵ = 3.59 mm1
c = 9.479 (4) ÅT = 293 K
β = 122.31 (2)°Block, black
V = 898.0 (5) Å30.20 × 0.18 × 0.18 mm
Z = 2

Data collection

Rigaku SCXmini CCD diffractometer1572 independent reflections
Radiation source: fine-focus sealed tube1305 reflections with I > 2σ(I)
graphiteRint = 0.061
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.625, Tmax = 1.000k = −17→17
7028 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.24w = 1/[σ2(Fo2) + (0.0543P)2 + 2.0516P] where P = (Fo2 + 2Fc2)/3
1572 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.64025 (11)−0.01316 (5)−0.29370 (10)0.0259 (3)
Cu20.500000.000000.000000.0221 (3)
O10.7728 (6)−0.0882 (3)0.0359 (5)0.0278 (12)
O21.1215 (6)−0.0703 (3)0.1528 (5)0.0234 (12)
N10.4612 (8)0.0444 (4)−0.2223 (7)0.0279 (17)
N20.4377 (9)0.1253 (4)−0.2455 (7)0.0344 (19)
N30.4134 (13)0.2001 (5)−0.2695 (10)0.063 (3)
N40.4241 (9)−0.0895 (4)−0.4673 (7)0.0365 (19)
N50.2454 (9)−0.0933 (4)−0.4977 (6)0.035 (2)
N60.0719 (11)−0.0987 (6)−0.5367 (8)0.064 (3)
N71.1181 (8)0.0896 (3)0.2648 (6)0.0245 (17)
N80.7462 (8)0.0827 (3)0.1309 (6)0.0224 (17)
C10.9407 (9)−0.0464 (4)0.1173 (7)0.0214 (17)
C20.9320 (9)0.0481 (4)0.1760 (7)0.0221 (17)
C30.7414 (11)0.1682 (4)0.1722 (9)0.033 (2)
C40.9286 (12)0.2167 (5)0.2647 (9)0.038 (3)
C51.1161 (11)0.1746 (4)0.3094 (8)0.032 (2)
H3A0.612500.195100.138800.0390*
H4A0.927200.275500.295300.0460*
H5A1.243100.205500.371300.0390*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0184 (4)0.0326 (5)0.0258 (5)−0.0030 (3)0.0112 (4)−0.0039 (3)
Cu20.0168 (6)0.0274 (6)0.0215 (6)−0.0014 (4)0.0099 (5)−0.0009 (4)
O10.026 (2)0.026 (2)0.030 (2)−0.0038 (19)0.014 (2)−0.0047 (19)
O20.018 (2)0.028 (2)0.023 (2)−0.0004 (17)0.0102 (18)−0.0010 (18)
N10.025 (3)0.031 (3)0.034 (3)−0.001 (2)0.020 (3)0.001 (3)
N20.029 (3)0.048 (4)0.035 (3)−0.001 (3)0.023 (3)−0.001 (3)
N30.091 (6)0.032 (4)0.092 (6)0.014 (4)0.066 (5)0.011 (4)
N40.026 (3)0.045 (4)0.035 (3)−0.003 (3)0.014 (3)−0.010 (3)
N50.035 (4)0.050 (4)0.018 (3)−0.012 (3)0.012 (3)−0.002 (3)
N60.034 (4)0.114 (7)0.040 (4)−0.025 (4)0.018 (3)−0.001 (4)
N70.021 (3)0.024 (3)0.026 (3)−0.005 (2)0.011 (2)−0.003 (2)
N80.021 (3)0.025 (3)0.022 (3)−0.001 (2)0.012 (2)−0.002 (2)
C10.021 (3)0.026 (3)0.016 (3)−0.001 (3)0.009 (3)0.000 (3)
C20.027 (3)0.020 (3)0.022 (3)0.000 (3)0.015 (3)0.002 (2)
C30.035 (4)0.029 (4)0.037 (4)0.007 (3)0.021 (3)0.002 (3)
C40.047 (5)0.025 (4)0.041 (4)0.000 (3)0.022 (4)−0.004 (3)
C50.030 (4)0.035 (4)0.026 (4)−0.011 (3)0.012 (3)−0.004 (3)

Geometric parameters (Å, °)

Cu1—N11.991 (7)N2—N31.140 (10)
Cu1—N41.946 (6)N4—N51.208 (10)
Cu1—N4i2.563 (6)N5—N61.146 (12)
Cu1—O2ii1.995 (5)N7—C21.334 (9)
Cu1—N7ii2.030 (6)N7—C51.346 (8)
Cu2—O12.298 (5)N8—C21.321 (10)
Cu2—N12.077 (6)N8—C31.347 (8)
Cu2—N82.006 (6)C1—C21.537 (9)
Cu2—O1iii2.298 (5)C3—C41.394 (12)
Cu2—N1iii2.077 (6)C4—C51.381 (13)
Cu2—N8iii2.006 (5)C3—H3A0.9300
O1—C11.236 (8)C4—H4A0.9300
O2—C11.258 (9)C5—H5A0.9300
N1—N21.229 (8)
N1—Cu1—N497.9 (3)Cu1—N1—N2115.2 (5)
N1—Cu1—N4i101.4 (2)Cu2—N1—N2115.3 (5)
O2ii—Cu1—N191.3 (2)N1—N2—N3178.9 (8)
N1—Cu1—N7ii155.5 (2)Cu1—N4—N5122.8 (5)
N4—Cu1—N4i85.8 (2)Cu1—N4—Cu1i94.2 (2)
O2ii—Cu1—N4167.4 (2)Cu1i—N4—N599.0 (4)
N4—Cu1—N7ii93.4 (3)N4—N5—N6175.6 (7)
O2ii—Cu1—N4i83.89 (19)C2—N7—C5117.2 (6)
N4i—Cu1—N7ii101.0 (2)Cu1ii—N7—C2112.0 (4)
O2ii—Cu1—N7ii81.5 (2)Cu1ii—N7—C5130.6 (5)
O1—Cu2—N188.1 (2)Cu2—N8—C2114.5 (4)
O1—Cu2—N879.4 (2)Cu2—N8—C3127.6 (6)
O1—Cu2—O1iii180.00C2—N8—C3117.8 (6)
O1—Cu2—N1iii91.9 (2)O1—C1—O2127.6 (6)
O1—Cu2—N8iii100.6 (2)O1—C1—C2117.9 (6)
N1—Cu2—N890.8 (2)O2—C1—C2114.4 (6)
O1iii—Cu2—N191.9 (2)N7—C2—N8125.6 (6)
N1—Cu2—N1iii180.00N7—C2—C1115.3 (6)
N1—Cu2—N8iii89.2 (2)N8—C2—C1119.1 (6)
O1iii—Cu2—N8100.6 (2)N8—C3—C4120.4 (8)
N1iii—Cu2—N889.2 (2)C3—C4—C5117.9 (7)
N8—Cu2—N8iii180.00N7—C5—C4121.1 (7)
O1iii—Cu2—N1iii88.1 (2)N8—C3—H3A120.00
O1iii—Cu2—N8iii79.4 (2)C4—C3—H3A120.00
N1iii—Cu2—N8iii90.8 (2)C3—C4—H4A121.00
Cu2—O1—C1109.0 (4)C5—C4—H4A121.00
Cu1ii—O2—C1116.6 (4)N7—C5—H5A119.00
Cu1—N1—Cu2116.8 (3)C4—C5—H5A119.00
O1—Cu1—N1—N2136.0 (5)N8—Cu2—N1—Cu184.3 (3)
N4—Cu1—N1—Cu2103.7 (3)N8—Cu2—N1—N2−55.7 (6)
N4—Cu1—N1—N2−116.3 (5)O1iii—Cu2—N1—Cu1−175.1 (3)
N4i—Cu1—N1—Cu2−169.0 (3)O1iii—Cu2—N1—N244.9 (6)
N4i—Cu1—N1—N2−28.9 (5)N8iii—Cu2—N1—Cu1−95.7 (3)
O2ii—Cu1—N1—Cu2−84.9 (3)N8iii—Cu2—N1—N2124.3 (6)
O2ii—Cu1—N1—N255.1 (5)O1—Cu2—N8—C2−2.2 (4)
N7ii—Cu1—N1—Cu2−12.9 (8)O1—Cu2—N8—C3175.8 (6)
N7ii—Cu1—N1—N2127.2 (6)N1—Cu2—N8—C2−90.1 (5)
O1—Cu1—N4—N572.4 (6)N1—Cu2—N8—C387.9 (6)
O1—Cu1—N4—Cu1i175.86 (15)O1iii—Cu2—N8—C2177.8 (4)
N1—Cu1—N4—N5−2.6 (6)O1iii—Cu2—N8—C3−4.3 (6)
N1—Cu1—N4—Cu1i100.9 (2)N1iii—Cu2—N8—C289.9 (5)
N4i—Cu1—N4—N5−103.5 (6)N1iii—Cu2—N8—C3−92.2 (6)
N4i—Cu1—N4—Cu1i0.0 (2)Cu1—O1—C1—O2−91.6 (6)
N7ii—Cu1—N4—N5155.7 (6)Cu1—O1—C1—C284.7 (5)
N7ii—Cu1—N4—Cu1i−100.8 (2)Cu2—O1—C1—O2−175.2 (5)
N1—Cu1—N4i—Cu1i−97.2 (3)Cu2—O1—C1—C21.2 (6)
N1—Cu1—N4i—N5i138.6 (4)Cu1ii—O2—C1—O1−178.1 (5)
N4—Cu1—N4i—Cu1i0.0 (3)Cu1ii—O2—C1—C25.5 (6)
N4—Cu1—N4i—N5i−124.2 (5)C5—N7—C2—N8−1.4 (9)
O1—Cu1—O2ii—C1ii87.9 (4)C5—N7—C2—C1175.8 (5)
N1—Cu1—O2ii—C1ii160.8 (4)Cu1ii—N7—C2—N8−176.8 (5)
O1—Cu1—N7ii—C2ii−84.5 (4)Cu1ii—N7—C2—C10.4 (6)
O1—Cu1—N7ii—C5ii90.1 (6)C2—N7—C5—C40.0 (10)
N1—Cu1—N7ii—C2ii−75.9 (7)Cu1ii—N7—C5—C4174.4 (5)
N1—Cu1—N7ii—C5ii98.7 (7)Cu2—N8—C2—N7−179.3 (5)
N4—Cu1—N7ii—C2ii166.6 (4)Cu2—N8—C2—C13.6 (7)
N4—Cu1—N7ii—C5ii−18.8 (6)C3—N8—C2—N72.6 (9)
N1—Cu2—O1—Cu1−2.98 (18)C3—N8—C2—C1−174.6 (6)
N1—Cu2—O1—C191.6 (4)Cu2—N8—C3—C4179.9 (5)
N8—Cu2—O1—Cu1−94.14 (17)C2—N8—C3—C4−2.2 (10)
N8—Cu2—O1—C10.4 (4)O1—C1—C2—N7179.3 (5)
N1iii—Cu2—O1—Cu1177.02 (18)O1—C1—C2—N8−3.3 (8)
N1iii—Cu2—O1—C1−88.4 (4)O2—C1—C2—N7−3.9 (8)
N8iii—Cu2—O1—Cu185.86 (17)O2—C1—C2—N8173.5 (5)
N8iii—Cu2—O1—C1−179.6 (4)N8—C3—C4—C51.0 (11)
O1—Cu2—N1—Cu14.9 (3)C3—C4—C5—N70.2 (11)
O1—Cu2—N1—N2−135.1 (6)

Symmetry codes: (i) −x+1, −y, −z−1; (ii) −x+2, −y, −z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2045).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cortes, R., Lezama, L., Pizarro, J. L., Arriortua, M. A. & Rojo, T. (1996). Angew. Chem. Int. Ed. Engl.35, 1810–1812.
  • Escuer, A., Vicente, R., Solans, X. & Font-Bardia, M. (1994). Inorg. Chem.33, 6007–6011.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). PROCESS-AUTO Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Rigaku (2006). SCXmini Benchtop Crystallography System Software Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Suarez-Varela, J., Mota, A. J., Aouryaghal, H., Cano, J., Rodriguez-Dieguez, A., Luneau, D., Colacio, E. (2008). Inorg. Chem.47, 8143–8158. [PubMed]
  • Zeng, Y.-F., Hu, X., Liu, F.-C. & Bu, X.-H. (2009). Chem. Soc. Rev.38 469–480. [PubMed]
  • Zhao, J.-P., Hu, B.-W., Yang, Q., Liu, F.-C., Hu, T.-L. & Bu, X.-H. (2009). Chin. Sci. Bull.54, 2461–2466.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography