PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o2117.
Published online 2010 July 24. doi:  10.1107/S1600536810029065
PMCID: PMC3007214

Benzoic acid–2,9-dimethyl­phenanthroline (1/1)

Abstract

The constituents of the title 1:1 co-crystal, C7H6O2·C14H12N2, are connected into dimeric aggregates by a bifurcated O—H(...)N hydrogen bond; the hydroxyl-H atom is hydrogen bonded to the two N atoms of the 2,9-dimethyl­phenanthroline. The hydrogen-bonded residues are almost orthogonal to each other [dihedral angle = 78.56 (7) °]. In the crystal packing, the aggregates are assembled into layers in the bc plane by π(...)π inter­actions [ring centroid(...)ring centroid distance = 3.5577 (16) Å] involving the pyridyl rings, and C–H(...)π contacts involving the phenanthroline-H atom and the phenyl ring of the acid.

Related literature

For related studies on co-crystal formation, see: Broker & Tiekink (2007 [triangle]); Broker et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2117-scheme1.jpg

Experimental

Crystal data

  • C7H6O2·C14H12N2
  • M r = 330.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2117-efi1.jpg
  • a = 13.575 (5) Å
  • b = 11.645 (4) Å
  • c = 11.148 (4) Å
  • β = 104.832 (6)°
  • V = 1703.6 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 98 K
  • 0.46 × 0.31 × 0.20 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.864, T max = 1
  • 13167 measured reflections
  • 3907 independent reflections
  • 3589 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.156
  • S = 1.09
  • 3907 reflections
  • 231 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810029065/bt5303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810029065/bt5303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008), the co-crystallization of 2,9-dimethylphenanthroline and benzoic acid was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The components of (I), Fig. 1, are connected by two O–H···N hydrogen bonds with the primary contact formed with the N2 atom with a weaker interaction to the the N1 atom, Table 1. The bifurcated nature of the O—H atom is responsible for the deviation of the O—H···N angles from 180 °. The carboxylic acid group is effectively co-planar with the benzene ring to which it is attached as seen in the O1—C1—C2—C3 torsion angle of 7.6 (2) °. The dihedral angle formed between the least-squares planes through the benzene ring and the 14 non-hydrogen atoms of the phenanthroline ring (r.m.s. deviation = 0.020 Å) is 78.56 (7) °, indicating an almost orthogonal relationship. The methyl-C8 and C21 atoms lie and 0.081 (2) and -0.032 (2) Å, respectively, out of the plane through the phenanthroline ring. In addition to the hydrogen bonding, π···π and C—H···π interactions are found in the crystal structure of (I). The former occur between centrosymmetrically related N2-pyridyl rings [Cg(N2,C16–C20)···Cg(N2,C16—C20)i = 3.5577 (16) Å for i: 1 - x, 1 - y, 2 - z]. The C–H···π contact occurs between a phenanthroline-H and the benzene ring of the acid, Table 1. The result is the formation of layers that stack along the a axis, Fig. 2.

Experimental

Colourless crystals of (I) were isolated from the 1/1 co-crystallization of 2,9-dimethylphenanthroline (ACROS; 0.08 mmol) and benzoic acid (Sigma-Aldrich; 0.07 mmol) in chloroform solution, m. pt. 399–403 K.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.98 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N hydrogen bonds are shown as dashed lines.
Fig. 2.
Stacking of layers along the a axis in (I). The O—H···N (orange), π···π (purple) and C–H···π (brown) contacts are shown as dashed lines.

Crystal data

C7H6O2·C14H12N2F(000) = 696
Mr = 330.37Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6463 reflections
a = 13.575 (5) Åθ = 2.1–40.6°
b = 11.645 (4) ŵ = 0.08 mm1
c = 11.148 (4) ÅT = 98 K
β = 104.832 (6)°Block, colourless
V = 1703.6 (11) Å30.46 × 0.31 × 0.20 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer3907 independent reflections
Radiation source: fine-focus sealed tube3589 reflections with I > 2σ(I)
graphiteRint = 0.035
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −17→17
Tmin = 0.864, Tmax = 1k = −15→15
13167 measured reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0717P)2 + 0.8352P] where P = (Fo2 + 2Fc2)/3
3907 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.25983 (16)0.62242 (12)0.73806 (12)0.0586 (5)
H1O0.276 (2)0.5534 (8)0.733 (2)0.088*
O20.22317 (11)0.60724 (11)0.53150 (11)0.0383 (3)
N10.20135 (10)0.37901 (11)0.76126 (12)0.0224 (3)
N20.39950 (10)0.44243 (10)0.79467 (11)0.0203 (3)
C10.22858 (14)0.66340 (14)0.62456 (15)0.0290 (4)
C20.20107 (11)0.78707 (13)0.62330 (14)0.0223 (3)
C30.22051 (12)0.85085 (14)0.73285 (15)0.0252 (3)
H30.24970.81470.81020.030*
C40.19729 (14)0.96692 (15)0.72878 (18)0.0335 (4)
H40.21131.01040.80330.040*
C50.15377 (16)1.01962 (16)0.6164 (2)0.0409 (5)
H50.13761.09910.61380.049*
C60.13392 (15)0.95635 (17)0.50764 (19)0.0388 (4)
H60.10370.99260.43070.047*
C70.15784 (12)0.84071 (15)0.51025 (16)0.0290 (4)
H70.14480.79800.43520.035*
C80.02727 (13)0.41778 (19)0.65105 (17)0.0383 (4)
H8A0.06270.46980.60700.058*
H8B−0.01540.46260.69260.058*
H8C−0.01560.36480.59160.058*
C90.10420 (12)0.35052 (15)0.74590 (15)0.0270 (3)
C100.07329 (13)0.26372 (16)0.81689 (16)0.0320 (4)
H100.00320.24500.80330.038*
C110.14511 (14)0.20691 (15)0.90530 (16)0.0307 (4)
H110.12520.14830.95350.037*
C120.24909 (12)0.23568 (13)0.92478 (14)0.0241 (3)
C130.27308 (11)0.32317 (12)0.84953 (13)0.0202 (3)
C140.32829 (14)0.18039 (14)1.01699 (14)0.0280 (4)
H140.31160.12101.06680.034*
C150.42676 (13)0.21252 (14)1.03328 (14)0.0278 (4)
H150.47840.17511.09450.033*
C160.45439 (12)0.30185 (13)0.95988 (14)0.0225 (3)
C170.37851 (11)0.35697 (12)0.86771 (13)0.0192 (3)
C180.55556 (12)0.33981 (14)0.97563 (14)0.0260 (3)
H180.60920.30581.03720.031*
C190.57615 (12)0.42575 (14)0.90205 (15)0.0261 (3)
H190.64410.45200.91230.031*
C200.49563 (12)0.47512 (13)0.81070 (14)0.0225 (3)
C210.51601 (14)0.56796 (15)0.72651 (16)0.0315 (4)
H21A0.46830.56030.64450.047*
H21B0.58600.56090.71860.047*
H21C0.50710.64330.76150.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1251 (15)0.0251 (7)0.0210 (6)0.0281 (8)0.0100 (8)0.0043 (5)
O20.0607 (9)0.0301 (7)0.0209 (6)0.0070 (6)0.0049 (6)−0.0025 (5)
N10.0235 (6)0.0242 (6)0.0198 (6)0.0004 (5)0.0060 (5)−0.0013 (5)
N20.0254 (6)0.0179 (6)0.0175 (6)−0.0008 (5)0.0054 (5)−0.0013 (4)
C10.0404 (9)0.0242 (8)0.0206 (7)0.0036 (7)0.0046 (7)0.0022 (6)
C20.0206 (7)0.0234 (7)0.0234 (7)0.0014 (5)0.0065 (6)0.0042 (6)
C30.0262 (7)0.0261 (8)0.0251 (8)0.0012 (6)0.0096 (6)0.0023 (6)
C40.0398 (9)0.0256 (8)0.0416 (10)0.0008 (7)0.0221 (8)−0.0022 (7)
C50.0503 (11)0.0248 (8)0.0562 (12)0.0117 (8)0.0293 (10)0.0124 (8)
C60.0396 (10)0.0386 (10)0.0408 (10)0.0120 (8)0.0150 (8)0.0197 (8)
C70.0262 (8)0.0337 (9)0.0268 (8)0.0031 (6)0.0063 (6)0.0078 (6)
C80.0252 (8)0.0568 (12)0.0318 (9)0.0056 (8)0.0050 (7)0.0026 (8)
C90.0248 (8)0.0330 (8)0.0235 (8)0.0002 (6)0.0067 (6)−0.0058 (6)
C100.0292 (8)0.0389 (10)0.0305 (9)−0.0096 (7)0.0124 (7)−0.0077 (7)
C110.0391 (9)0.0296 (8)0.0273 (8)−0.0099 (7)0.0155 (7)−0.0029 (6)
C120.0341 (8)0.0205 (7)0.0193 (7)−0.0034 (6)0.0098 (6)−0.0022 (6)
C130.0264 (7)0.0184 (7)0.0164 (6)−0.0008 (5)0.0066 (6)−0.0032 (5)
C140.0424 (9)0.0213 (7)0.0209 (7)−0.0022 (6)0.0089 (7)0.0029 (6)
C150.0382 (9)0.0234 (8)0.0199 (7)0.0055 (6)0.0039 (7)0.0036 (6)
C160.0285 (8)0.0210 (7)0.0173 (7)0.0039 (6)0.0046 (6)−0.0019 (5)
C170.0254 (7)0.0172 (6)0.0152 (6)0.0009 (5)0.0055 (6)−0.0026 (5)
C180.0252 (7)0.0285 (8)0.0220 (7)0.0064 (6)0.0016 (6)−0.0020 (6)
C190.0221 (7)0.0302 (8)0.0267 (8)0.0004 (6)0.0073 (6)−0.0054 (6)
C200.0274 (7)0.0213 (7)0.0201 (7)−0.0012 (6)0.0086 (6)−0.0048 (5)
C210.0354 (9)0.0294 (9)0.0315 (9)−0.0072 (7)0.0121 (7)0.0008 (7)

Geometric parameters (Å, °)

O1—C11.317 (2)C9—C101.412 (2)
O1—H1O0.839 (12)C10—C111.367 (3)
O2—C11.213 (2)C10—H100.9500
N1—C91.328 (2)C11—C121.412 (2)
N1—C131.3597 (19)C11—H110.9500
N2—C201.327 (2)C12—C131.410 (2)
N2—C171.3614 (19)C12—C141.436 (2)
C1—C21.487 (2)C13—C171.448 (2)
C2—C71.394 (2)C14—C151.355 (2)
C2—C31.396 (2)C14—H140.9500
C3—C41.386 (2)C15—C161.432 (2)
C3—H30.9500C15—H150.9500
C4—C51.385 (3)C16—C171.410 (2)
C4—H40.9500C16—C181.410 (2)
C5—C61.385 (3)C18—C191.367 (2)
C5—H50.9500C18—H180.9500
C6—C71.384 (3)C19—C201.411 (2)
C6—H60.9500C19—H190.9500
C7—H70.9500C20—C211.503 (2)
C8—C91.502 (2)C21—H21A0.9800
C8—H8A0.9800C21—H21B0.9800
C8—H8B0.9800C21—H21C0.9800
C8—H8C0.9800
C1—O1—H1O108 (2)C10—C11—C12119.76 (15)
C9—N1—C13118.52 (14)C10—C11—H11120.1
C20—N2—C17118.58 (13)C12—C11—H11120.1
O2—C1—O1124.10 (16)C13—C12—C11117.00 (15)
O2—C1—C2123.66 (15)C13—C12—C14120.36 (15)
O1—C1—C2112.24 (14)C11—C12—C14122.64 (15)
C7—C2—C3119.61 (15)N1—C13—C12122.99 (14)
C7—C2—C1119.28 (15)N1—C13—C17118.06 (13)
C3—C2—C1121.09 (14)C12—C13—C17118.94 (14)
C4—C3—C2120.00 (15)C15—C14—C12120.29 (15)
C4—C3—H3120.0C15—C14—H14119.9
C2—C3—H3120.0C12—C14—H14119.9
C5—C4—C3120.17 (17)C14—C15—C16121.19 (15)
C5—C4—H4119.9C14—C15—H15119.4
C3—C4—H4119.9C16—C15—H15119.4
C4—C5—C6119.92 (17)C17—C16—C18117.04 (14)
C4—C5—H5120.0C17—C16—C15119.87 (15)
C6—C5—H5120.0C18—C16—C15123.08 (14)
C7—C6—C5120.49 (17)N2—C17—C16122.89 (14)
C7—C6—H6119.8N2—C17—C13117.76 (13)
C5—C6—H6119.8C16—C17—C13119.34 (13)
C6—C7—C2119.82 (17)C19—C18—C16119.79 (14)
C6—C7—H7120.1C19—C18—H18120.1
C2—C7—H7120.1C16—C18—H18120.1
C9—C8—H8A109.5C18—C19—C20119.44 (15)
C9—C8—H8B109.5C18—C19—H19120.3
H8A—C8—H8B109.5C20—C19—H19120.3
C9—C8—H8C109.5N2—C20—C19122.25 (14)
H8A—C8—H8C109.5N2—C20—C21117.01 (14)
H8B—C8—H8C109.5C19—C20—C21120.74 (14)
N1—C9—C10122.31 (16)C20—C21—H21A109.5
N1—C9—C8116.68 (15)C20—C21—H21B109.5
C10—C9—C8120.99 (15)H21A—C21—H21B109.5
C11—C10—C9119.42 (15)C20—C21—H21C109.5
C11—C10—H10120.3H21A—C21—H21C109.5
C9—C10—H10120.3H21B—C21—H21C109.5
O2—C1—C2—C76.1 (3)C14—C12—C13—C17−0.6 (2)
O1—C1—C2—C7−174.24 (17)C13—C12—C14—C150.6 (2)
O2—C1—C2—C3−172.06 (17)C11—C12—C14—C15−178.93 (15)
O1—C1—C2—C37.6 (2)C12—C14—C15—C160.1 (2)
C7—C2—C3—C4−0.3 (2)C14—C15—C16—C17−0.8 (2)
C1—C2—C3—C4177.84 (15)C14—C15—C16—C18178.49 (15)
C2—C3—C4—C50.7 (3)C20—N2—C17—C160.2 (2)
C3—C4—C5—C6−0.4 (3)C20—N2—C17—C13179.49 (12)
C4—C5—C6—C7−0.4 (3)C18—C16—C17—N20.7 (2)
C5—C6—C7—C20.8 (3)C15—C16—C17—N2−179.97 (13)
C3—C2—C7—C6−0.5 (2)C18—C16—C17—C13−178.60 (13)
C1—C2—C7—C6−178.63 (16)C15—C16—C17—C130.7 (2)
C13—N1—C9—C10−0.7 (2)N1—C13—C17—N2−0.3 (2)
C13—N1—C9—C8177.54 (14)C12—C13—C17—N2−179.36 (13)
N1—C9—C10—C110.4 (3)N1—C13—C17—C16179.01 (13)
C8—C9—C10—C11−177.79 (16)C12—C13—C17—C160.0 (2)
C9—C10—C11—C120.1 (2)C17—C16—C18—C19−0.6 (2)
C10—C11—C12—C13−0.3 (2)C15—C16—C18—C19−179.93 (15)
C10—C11—C12—C14179.27 (15)C16—C18—C19—C20−0.3 (2)
C9—N1—C13—C120.6 (2)C17—N2—C20—C19−1.1 (2)
C9—N1—C13—C17−178.42 (13)C17—N2—C20—C21178.74 (13)
C11—C12—C13—N1−0.1 (2)C18—C19—C20—N21.2 (2)
C14—C12—C13—N1−179.61 (14)C18—C19—C20—C21−178.67 (14)
C11—C12—C13—C17178.91 (13)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.839 (12)2.327 (16)2.973 (2)134 (2)
O1—H1o···N20.839 (12)2.09 (2)2.788 (2)141 (2)
C19—H19···Cgi0.952.603.426 (2)145

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5303).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography