PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m876.
Published online 2010 July 3. doi:  10.1107/S1600536810024803
PMCID: PMC3007211

Dichloridobis(isoquinoline-κN)zinc(II)

Abstract

In the title compound, [ZnCl2(C9H7N)2], the ZnII cation is coordinated by two Cl anions and two isoquinoline ligands in a distorted ZnCl2N2 tetra­hedral geometry; the two isoquinoline ring systems are twisted with respect to each other at a dihedral angle of 45.72 (8)°. The parallel isoqiunoline ring systems of adjacent mol­ecules are partially overlapped, with the shorter face-to-face distance of 3.438 (19) Å indicating the existence of weak π–π stacking in the crystal structure.

Related literature

For general background to π-π stacking, see: Deisenhofer & Michel (1989 [triangle]); Su & Xu (2004 [triangle]); Xu et al. (2007 [triangle]). For π-π stacking between isoquinoline ring systems in a CoII complex, see: Li et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m876-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C9H7N)2]
  • M r = 394.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m876-efi1.jpg
  • a = 7.8956 (15) Å
  • b = 13.363 (2) Å
  • c = 15.677 (2) Å
  • β = 90.220 (8)°
  • V = 1654.0 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.81 mm−1
  • T = 294 K
  • 0.40 × 0.32 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.788, T max = 0.862
  • 11270 measured reflections
  • 2975 independent reflections
  • 1933 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.153
  • S = 0.95
  • 2975 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 1.33 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024803/hb5517sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024803/hb5517Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

The π-π stacking between aromatic rings is an important non-covalent interaction and correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title complex incorporating isoquinoline ligand has recently been prepared in the laboratory and its crystal structure is reported here.

In the title compound, the Zn cation is coordinated by two Cl- anions and two isoquinoline ligands in a distorted ZnCl2N2 tetrahedral geometry (Fig. 1). The two isoquinoline ring systems are tweisted to each other at a dihedral angle of 45.72 (8)°. The parallel N2-isoqiunoline and N2i-isoquinoline ring systems [symmetry code: (i) 2 - x, 1 - y,1 - z] of adjacent molecules are partially overlapped, the shorter face-to-face distance of 3.438 (19) Å indicates the existence of weak π-π stacking in the crystal structure (Fig. 2), similar to that found in a polymeric Co complex with isoquinoline ligands (Li et al. 2010). No hydrigen bonding is present in the crystal structure.

Experimental

Isoquinoline (0.23 ml, 2 mmol) and ZnCl2 (0.14 g, 1 mmol) were dissolved in an absolute ethanol (10 ml). The solution was refluxed for 12 h. After cooling to room temperature, the solution was filtered and colourless prisms of (I) were obtained from the filtrate after 2 d.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and refined in riding mode with Uiso(H) = 1.2Ueq(C). An ADDSYM-XCT check (Spek, 2009) shows no additional symmetry for the structure. An attempt at refinement with higher symmetry [orthorhombic Pmn21] did not give a reasonable solution.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
The unit cell packing diagram of (I) showing the parallel arrangement of isoquinoline ligands. H atoms have been omitted for clarity.

Crystal data

[ZnCl2(C9H7N)2]F(000) = 800
Mr = 394.58Dx = 1.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6266 reflections
a = 7.8956 (15) Åθ = 3.3–24.6°
b = 13.363 (2) ŵ = 1.81 mm1
c = 15.677 (2) ÅT = 294 K
β = 90.220 (8)°Prism, colorless
V = 1654.0 (5) Å30.40 × 0.32 × 0.30 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP diffractometer2975 independent reflections
Radiation source: fine-focus sealed tube1933 reflections with I > 2σ(I)
graphiteRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −16→15
Tmin = 0.788, Tmax = 0.862l = −18→17
11270 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.1036P)2] where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.75125 (6)0.30754 (4)0.25278 (3)0.0408 (2)
Cl10.51169 (15)0.22275 (10)0.27066 (8)0.0597 (4)
Cl20.98654 (16)0.21580 (10)0.25609 (9)0.0616 (4)
N10.7603 (4)0.3828 (3)0.1381 (2)0.0448 (9)
N20.7615 (5)0.4115 (3)0.3490 (2)0.0466 (9)
C10.7034 (6)0.4723 (4)0.1236 (3)0.0482 (11)
H10.65500.50710.16880.058*
C20.7109 (5)0.5212 (3)0.0418 (3)0.0423 (10)
C30.6513 (6)0.6175 (4)0.0286 (3)0.0590 (13)
H30.60420.65400.07310.071*
C40.6632 (7)0.6570 (4)−0.0501 (3)0.0651 (14)
H40.62340.7216−0.05950.078*
C50.7340 (7)0.6037 (5)−0.1187 (3)0.0645 (15)
H50.74090.6337−0.17210.077*
C60.7913 (7)0.5106 (5)−0.1080 (3)0.0620 (14)
H60.83650.4755−0.15380.074*
C70.7822 (6)0.4647 (4)−0.0243 (3)0.0481 (12)
C80.8407 (6)0.3682 (4)−0.0097 (3)0.0589 (13)
H80.88630.3301−0.05360.071*
C90.8294 (6)0.3310 (4)0.0713 (3)0.0559 (12)
H90.87080.26700.08160.067*
C100.7032 (6)0.3890 (4)0.4234 (3)0.0525 (12)
H100.64850.32790.43030.063*
C110.7191 (5)0.4547 (3)0.4968 (3)0.0444 (11)
C120.6585 (7)0.4275 (4)0.5760 (3)0.0620 (14)
H120.60660.36580.58460.074*
C130.6774 (7)0.4941 (5)0.6412 (3)0.0676 (15)
H130.63750.47700.69500.081*
C140.7542 (6)0.5864 (4)0.6299 (3)0.0591 (14)
H140.76380.62970.67610.071*
C150.8152 (6)0.6148 (4)0.5537 (3)0.0582 (13)
H150.86730.67670.54730.070*
C160.7987 (5)0.5473 (3)0.4815 (3)0.0448 (11)
C170.8591 (6)0.5706 (4)0.4020 (3)0.0552 (13)
H170.91200.63160.39200.066*
C180.8402 (6)0.5027 (4)0.3381 (3)0.0551 (13)
H180.88240.51850.28450.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.0544 (4)0.0332 (3)0.0347 (3)0.0000 (2)0.0035 (2)−0.0002 (2)
Cl10.0625 (8)0.0496 (8)0.0672 (8)−0.0098 (6)0.0145 (6)−0.0045 (6)
Cl20.0638 (8)0.0546 (8)0.0665 (8)0.0131 (6)0.0068 (6)−0.0011 (6)
N10.051 (2)0.042 (2)0.042 (2)−0.0036 (18)−0.0006 (16)0.0036 (17)
N20.053 (2)0.049 (2)0.037 (2)0.0060 (19)0.0019 (16)−0.0027 (18)
C10.053 (3)0.048 (3)0.043 (3)−0.004 (2)−0.002 (2)−0.006 (2)
C20.047 (2)0.043 (3)0.037 (2)−0.007 (2)−0.0001 (19)−0.007 (2)
C30.072 (3)0.050 (3)0.055 (3)0.004 (3)−0.007 (2)−0.003 (3)
C40.073 (3)0.070 (4)0.053 (3)−0.011 (3)−0.010 (3)0.012 (3)
C50.077 (4)0.082 (4)0.034 (3)−0.015 (3)−0.003 (2)0.018 (3)
C60.071 (3)0.074 (4)0.040 (3)−0.006 (3)0.002 (2)0.009 (3)
C70.048 (3)0.046 (3)0.050 (3)−0.006 (2)−0.002 (2)−0.005 (2)
C80.071 (3)0.060 (3)0.045 (3)0.004 (3)0.008 (2)−0.015 (2)
C90.071 (3)0.056 (3)0.041 (3)0.000 (3)0.009 (2)−0.002 (2)
C100.054 (3)0.057 (3)0.046 (3)0.001 (2)0.000 (2)0.001 (2)
C110.041 (2)0.044 (3)0.049 (3)0.005 (2)0.001 (2)0.005 (2)
C120.067 (3)0.061 (4)0.058 (3)−0.002 (3)0.010 (3)0.008 (3)
C130.075 (4)0.078 (4)0.049 (3)0.005 (3)−0.001 (3)−0.012 (3)
C140.069 (3)0.067 (4)0.041 (3)0.011 (3)−0.004 (2)−0.013 (3)
C150.062 (3)0.063 (3)0.050 (3)0.008 (3)−0.005 (2)−0.008 (3)
C160.042 (2)0.049 (3)0.043 (3)0.013 (2)0.0004 (19)0.012 (2)
C170.072 (3)0.038 (3)0.056 (3)−0.003 (2)0.004 (2)0.010 (2)
C180.073 (3)0.043 (3)0.050 (3)0.002 (2)−0.005 (2)−0.007 (2)

Geometric parameters (Å, °)

Zn—N12.062 (4)C7—C81.388 (7)
Zn—N22.052 (4)C8—C91.366 (7)
Zn—Cl12.2235 (13)C8—H80.9300
Zn—Cl22.2262 (13)C9—H90.9300
N1—C11.298 (6)C10—C111.453 (6)
N1—C91.370 (6)C10—H100.9300
N2—C101.290 (6)C11—C121.381 (7)
N2—C181.379 (6)C11—C161.409 (6)
C1—C21.441 (6)C12—C131.363 (7)
C1—H10.9300C12—H120.9300
C2—C31.385 (7)C13—C141.387 (8)
C2—C71.403 (6)C13—H130.9300
C3—C41.346 (7)C14—C151.344 (7)
C3—H30.9300C14—H140.9300
C4—C51.406 (8)C15—C161.453 (7)
C4—H40.9300C15—H150.9300
C5—C61.334 (8)C16—C171.371 (6)
C5—H50.9300C17—C181.359 (7)
C6—C71.450 (7)C17—H170.9300
C6—H60.9300C18—H180.9300
N2—Zn—N1108.05 (16)C9—C8—C7117.9 (5)
N2—Zn—Cl1106.47 (11)C9—C8—H8121.0
N1—Zn—Cl1112.99 (10)C7—C8—H8121.0
N2—Zn—Cl2108.96 (11)C8—C9—N1123.6 (5)
N1—Zn—Cl2104.91 (11)C8—C9—H9118.2
Cl1—Zn—Cl2115.26 (6)N1—C9—H9118.2
C1—N1—C9118.1 (4)N2—C10—C11123.0 (5)
C1—N1—Zn126.1 (3)N2—C10—H10118.5
C9—N1—Zn115.8 (3)C11—C10—H10118.5
C10—N2—C18118.7 (4)C12—C11—C16122.8 (5)
C10—N2—Zn119.6 (4)C12—C11—C10121.6 (5)
C18—N2—Zn121.6 (3)C16—C11—C10115.6 (4)
N1—C1—C2123.9 (4)C13—C12—C11117.7 (5)
N1—C1—H1118.1C13—C12—H12121.2
C2—C1—H1118.1C11—C12—H12121.2
C3—C2—C7121.8 (4)C12—C13—C14122.1 (5)
C3—C2—C1122.6 (4)C12—C13—H13118.9
C7—C2—C1115.6 (4)C14—C13—H13118.9
C4—C3—C2118.4 (5)C15—C14—C13121.5 (5)
C4—C3—H3120.8C15—C14—H14119.2
C2—C3—H3120.8C13—C14—H14119.2
C3—C4—C5122.1 (5)C14—C15—C16119.1 (5)
C3—C4—H4118.9C14—C15—H15120.5
C5—C4—H4118.9C16—C15—H15120.5
C6—C5—C4120.8 (5)C17—C16—C11120.7 (5)
C6—C5—H5119.6C17—C16—C15122.5 (5)
C4—C5—H5119.6C11—C16—C15116.8 (4)
C5—C6—C7119.3 (5)C18—C17—C16118.7 (5)
C5—C6—H6120.3C18—C17—H17120.6
C7—C6—H6120.3C16—C17—H17120.6
C8—C7—C2120.8 (4)C17—C18—N2123.2 (5)
C8—C7—C6121.7 (5)C17—C18—H18118.4
C2—C7—C6117.5 (5)N2—C18—H18118.4

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5517).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Deisenhofer, J. & Michel, H. (1989). EMBO J.8, 2149–2170. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, M.-J., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m840. [PMC free article] [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem.57, 223–229.
  • Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography