PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): o1906.
Published online 2010 July 3. doi:  10.1107/S1600536810023706
PMCID: PMC3007200

2-Isopropyl-3-methyl­quinoxaline 1,4-dioxide

Abstract

In the title compound, C12H14N2O2, the quinoxaline ring system and the C atoms of the methylene and methyl substituents lie on a mirror plane. The crystal packing is stabilized by weak π–π inter­actions [centroid–centroid distance = 3.680 (7) Å].

Related literature

For the preparation, see: Issidorides & Haddadin (1966 [triangle]). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006 [triangle]); Edwards et al. (1975 [triangle]); Glazer & Chappel (1982 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1906-scheme1.jpg

Experimental

Crystal data

  • C12H14N2O2
  • M r = 218.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1906-efi1.jpg
  • a = 13.3879 (10) Å
  • b = 6.8462 (6) Å
  • c = 11.8861 (9) Å
  • V = 1089.44 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 296 K
  • 0.29 × 0.27 × 0.26 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.651, T max = 0.745
  • 10376 measured reflections
  • 1446 independent reflections
  • 1062 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.203
  • S = 1.17
  • 1446 reflections
  • 96 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023706/jh2164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023706/jh2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the NSFC (grant No. 20625307), the National Basic Research Program of China (973 Program, 2009CB930103) and the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU).

supplementary crystallographic information

Comment

In recent years, the compounds of quinoxaline di-N-oxide have been used as important and widely-used drugs for sterilization and growth-promoting of animals. Quinoxaline di-N-oxide also has pharmacological properties usable as intermediates for producing plant protection agents. The research in the crystal of quinoxaline di-N-oxide has great meaning to pharmacology. The title compound 2-isopropyl-3-methylquinoxaline 1,4-dioxide was obtained by Beirut Reaction: benzofurazan-N-oxides reacted with cyclohexanone catalysed by triethylamine without any other solvent.

Experimental

Yellow crystals were obtained by slow evaporation of the solvents from solutions of the title compound in methanol. 1H NMR (400 MHz, DMSO-d6): δ 8.43 (2H, d, J = 3.5 Hz, Ar—H), 7.88 (2H, d, J = 3.2 Hz, Ar—H), 2.93 (4H, s, CH2), 1.83 (4H, s, CH2); IRνmax (KBr, cm-1): 3455, 3125, 2943, 2866, 1987, 1953, 1737, 1605, 1516, 1441, 1422, 1400, 1357, 1315, 1277, 1246, 1125, 1089, 1016, 979, 933, 904, 842, 824, 776, 694, 668, 640, 613, 557, 528, 436; Calcd for C12H12N2O2: C, 66.65; H, 5.59; N, 12.96. Found: C, 66.34; H, 5.32; N, 12.90; ESIMS calcd for C12H12N2O2H+ m/z 217.24, found m/z 217.20.

Refinement

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negativeF2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Figures

Fig. 1.
Ellipsoid plot.
Fig. 2.
Packing diagram.

Crystal data

C12H14N2O2Dx = 1.331 Mg m3
Mr = 218.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4638 reflections
a = 13.3879 (10) Åθ = 3.0–27.9°
b = 6.8462 (6) ŵ = 0.09 mm1
c = 11.8861 (9) ÅT = 296 K
V = 1089.44 (15) Å3Block, colourless
Z = 40.29 × 0.27 × 0.26 mm
F(000) = 464

Data collection

Bruker APEXII CCD area-detector diffractometer1446 independent reflections
Radiation source: fine-focus sealed tube1062 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 28.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −18→17
Tmin = 0.651, Tmax = 0.745k = −9→9
10376 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.203w = 1/[σ2(Fo2) + (0.0863P)2 + 0.4481P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1446 reflectionsΔρmax = 0.38 e Å3
96 parametersΔρmin = −0.35 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9509 (2)0.25001.1853 (3)0.0603 (8)
H110.90260.25001.24160.072*
C21.0499 (3)0.25001.2128 (4)0.0731 (10)
H21.06890.25001.28800.088*
C31.1212 (2)0.25001.1306 (4)0.0723 (11)
H31.18830.25001.15100.087*
C41.0962 (2)0.25001.0186 (4)0.0641 (9)
H41.14540.25000.96330.077*
C50.99369 (19)0.25000.9893 (2)0.0449 (6)
C60.92245 (18)0.25001.0730 (2)0.0440 (6)
C70.79331 (18)0.25000.9352 (2)0.0427 (6)
C80.8664 (2)0.25000.8500 (2)0.0481 (6)
C90.8419 (3)0.25000.7287 (3)0.0705 (9)
H9A0.90230.25000.68450.080*
H9B0.80340.13550.70990.080*
C100.6836 (2)0.25000.9063 (3)0.0551 (7)
H100.67980.25000.82400.066*
C110.63084 (17)0.0655 (4)0.9452 (2)0.0777 (8)
H11A0.6657−0.04680.91690.117*
H11B0.56360.06520.91730.117*
H11C0.62990.06151.02590.117*
N10.82094 (15)0.25001.04424 (19)0.0445 (6)
N20.96482 (17)0.25000.8772 (2)0.0513 (6)
O10.75580 (15)0.25001.12490 (18)0.0681 (7)
O21.03357 (18)0.25000.8002 (2)0.0809 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0617 (17)0.0652 (18)0.0539 (18)0.000−0.0125 (14)0.000
C20.067 (2)0.066 (2)0.085 (3)0.000−0.0309 (19)0.000
C30.0494 (16)0.0531 (16)0.114 (3)0.000−0.0284 (19)0.000
C40.0403 (13)0.0433 (14)0.109 (3)0.0000.0089 (16)0.000
C50.0405 (12)0.0326 (11)0.0616 (17)0.0000.0047 (11)0.000
C60.0389 (12)0.0377 (12)0.0553 (15)0.000−0.0038 (11)0.000
C70.0408 (12)0.0438 (12)0.0434 (14)0.000−0.0006 (10)0.000
C80.0557 (14)0.0409 (12)0.0477 (15)0.0000.0076 (12)0.000
C90.084 (2)0.081 (2)0.0466 (17)0.0000.0075 (16)0.000
C100.0409 (13)0.0706 (18)0.0537 (17)0.000−0.0040 (12)0.000
C110.0525 (11)0.0818 (17)0.099 (2)−0.0170 (11)−0.0097 (12)0.0027 (15)
N10.0368 (10)0.0509 (12)0.0457 (12)0.0000.0050 (9)0.000
N20.0485 (12)0.0406 (11)0.0648 (15)0.0000.0196 (11)0.000
O10.0461 (10)0.1067 (18)0.0516 (12)0.0000.0126 (9)0.000
O20.0716 (15)0.0876 (17)0.0836 (18)0.0000.0422 (13)0.000

Geometric parameters (Å, °)

C1—C21.365 (4)C7—C101.508 (4)
C1—C61.389 (4)C8—N21.357 (4)
C1—H110.9300C8—C91.479 (4)
C2—C31.366 (6)C9—H9A0.964 (4)
C2—H20.9300C9—H9B0.964 (2)
C3—C41.373 (5)C10—C11i1.519 (3)
C3—H30.9300C10—C111.519 (3)
C4—C51.416 (4)C10—H100.9800
C4—H40.9300C11—H11A0.9600
C5—C61.378 (4)C11—H11B0.9600
C5—N21.387 (4)C11—H11C0.9600
C6—N11.401 (3)N1—O11.296 (3)
C7—N11.348 (3)N2—O21.298 (3)
C7—C81.409 (4)
C2—C1—C6119.7 (3)C7—C8—C9123.1 (3)
C2—C1—H11120.1C8—C9—H9A110.2 (3)
C6—C1—H11120.1C8—C9—H9B110.1 (2)
C1—C2—C3120.5 (3)H9A—C9—H9B108.8 (2)
C1—C2—H2119.7C7—C10—C11i112.56 (16)
C3—C2—H2119.7C7—C10—C11112.56 (16)
C2—C3—C4121.5 (3)C11i—C10—C11112.5 (3)
C2—C3—H3119.2C7—C10—H10106.2
C4—C3—H3119.2C11i—C10—H10106.2
C3—C4—C5118.4 (3)C11—C10—H10106.2
C3—C4—H4120.8C10—C11—H11A109.5
C5—C4—H4120.8C10—C11—H11B109.5
C6—C5—N2120.0 (2)H11A—C11—H11B109.5
C6—C5—C4119.6 (3)C10—C11—H11C109.5
N2—C5—C4120.4 (3)H11A—C11—H11C109.5
C5—C6—C1120.3 (3)H11B—C11—H11C109.5
C5—C6—N1119.7 (3)O1—N1—C7121.8 (2)
C1—C6—N1120.0 (3)O1—N1—C6118.2 (2)
N1—C7—C8120.0 (2)C7—N1—C6120.0 (2)
N1—C7—C10119.1 (2)O2—N2—C8121.4 (3)
C8—C7—C10120.9 (3)O2—N2—C5118.7 (2)
N2—C8—C7120.2 (3)C8—N2—C5120.0 (2)
N2—C8—C9116.6 (3)
C6—C1—C2—C30.000 (2)C8—C7—C10—C11115.8 (2)
C1—C2—C3—C40.000 (2)C8—C7—N1—O1180.0
C2—C3—C4—C50.000 (1)C10—C7—N1—O10.0
C3—C4—C5—C60.000 (1)C8—C7—N1—C60.0
C3—C4—C5—N2180.000 (1)C10—C7—N1—C6180.0
N2—C5—C6—C1180.0C5—C6—N1—O1180.0
C4—C5—C6—C10.000 (1)C1—C6—N1—O10.0
N2—C5—C6—N10.0C5—C6—N1—C70.0
C4—C5—C6—N1180.0C1—C6—N1—C7180.0
C2—C1—C6—C50.000 (1)C7—C8—N2—O2180.0
C2—C1—C6—N1180.0C9—C8—N2—O20.0
N1—C7—C8—N20.0C7—C8—N2—C50.0
C10—C7—C8—N2180.0C9—C8—N2—C5180.0
N1—C7—C8—C9180.0C6—C5—N2—O2180.0
C10—C7—C8—C90.0C4—C5—N2—O20.0
N1—C7—C10—C11i64.2 (2)C6—C5—N2—C80.0
C8—C7—C10—C11i−115.8 (2)C4—C5—N2—C8180.0
N1—C7—C10—C11−64.2 (2)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2164).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Amin, K. M., Ismail, M. M. F., Noaman. E., Soliman, D. H. & Ammar, Y. A. (2006). Bioorg. Med. Chem.14, 6917–6923. [PubMed]
  • Bruker (2005). APEX2, SAINTandSADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Edwards. M. L., Bambury. R. E. & Ritter. H. W. (1975). J. Med. Chem.18, 637–639. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Glazer, E. A. & Chappel, L. R. (1982) J. Med. Chem.25, 868–870. [PubMed]
  • Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem.31, 4067–4068.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography