PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 August 1; 66(Pt 8): m872.
Published online 2010 July 3. doi:  10.1107/S1600536810024773
PMCID: PMC3007195

[1,2-Bis(2-pyridyl­meth­oxy)benzene-κ4 N,O,O′,N′]bis­(nitrato-κO)copper(II)

Abstract

In the title compound, [Cu(NO3)2(C18H16N2O2)], the CuII ion is six-coordinated in a Jahn–Teller-distorted octa­hedral environment defined by two O and two N atoms from the ligand and two O atoms from two monodentate nitrate anions.

Related literature

For the synthesis and general backround to flexible pyridyl-based ligands, see: Liu et al. (2010 [triangle]). For a related structure, see: Zhang et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m872-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C18H16N2O2)]
  • M r = 479.90
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m872-efi1.jpg
  • a = 8.621 (5) Å
  • b = 10.826 (6) Å
  • c = 10.887 (6) Å
  • α = 78.75 (2)°
  • β = 77.590 (19)°
  • γ = 76.54 (2)°
  • V = 953.8 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 291 K
  • 0.31 × 0.30 × 0.19 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.705, T max = 0.808
  • 9416 measured reflections
  • 4314 independent reflections
  • 3150 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.111
  • S = 1.04
  • 4314 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024773/ng2792sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024773/ng2792Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2009RFXXG027) and Heilongjiang University for supporting this study.

supplementary crystallographic information

Comment

In recent, our group has employed the flexible N-heterocyclic ligands reacting with transition metal to construct several supramolecular architectures (Liu et al. 2010; Zhang et al. 2010). As a part of our continuing work for bipyridyl aromatic ligands, we report the crystal s tructure of the title compound here.

1,2-Bis(pyridin-2-ylmethoxy)benzene molecule act as a chelating ligand to coordinate with CuII ion forming a discrete strucutre. Two nitrate anions also coordinate to the center CuII ion, resulting the CuII ion is six-coordinated in a typically Jahn-Teller distorted octahedral environment. Furthermore, a weak Cu—O bond, with distances of 2.742 (3) Å, between the CuII center and one nitrate anion link the coordination geometry into a distorted monocapped octahedron (Figure 1, Table 1).

Experimental

The 1,2-Bis(pyridin-2-ylmethoxy)benzene was synthesized by the reaction of ο-dihydroxybenzene and 2-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Liu et al., 2010). Title ligand (0.58 g, 2 mmol) and Cu(NO3)2.H2O (0.48 g, 2 mmol) were dissolved in 15 ml e thanol, and then the mixture keep stirring for 30 minute. The resulting solution was filtered, and the filtrate was allowed to stand in a desiccator at room temperature for several days. Bule block crystals were obtained.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methene C), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Cu(NO3)2(C18H16N2O2)]Z = 2
Mr = 479.90F(000) = 490
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.621 (5) ÅCell parameters from 6858 reflections
b = 10.826 (6) Åθ = 3.4–27.5°
c = 10.887 (6) ŵ = 1.20 mm1
α = 78.75 (2)°T = 291 K
β = 77.590 (19)°Block, blue
γ = 76.54 (2)°0.31 × 0.30 × 0.19 mm
V = 953.8 (9) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4314 independent reflections
Radiation source: fine-focus sealed tube3150 reflections with I > 2σ(I)
graphiteRint = 0.039
ω scanθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→10
Tmin = 0.705, Tmax = 0.808k = −13→14
9416 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0521P)2 + 0.2381P] where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5717 (4)0.6307 (3)0.2015 (3)0.0476 (8)
H10.50160.57490.23940.057*
C20.7258 (4)0.5802 (4)0.1445 (3)0.0562 (9)
H20.75890.49230.14340.067*
C30.8307 (4)0.6624 (4)0.0890 (3)0.0551 (9)
H30.93500.63080.04860.066*
C40.7797 (4)0.7903 (4)0.0941 (3)0.0483 (8)
H40.84980.84650.05820.058*
C50.6229 (3)0.8369 (3)0.1529 (3)0.0379 (7)
C60.5702 (3)0.9769 (3)0.1585 (3)0.0437 (7)
H6A0.64791.00570.19330.052*
H6B0.56671.02370.07320.052*
C70.3364 (4)1.1288 (3)0.2277 (3)0.0438 (7)
C80.4092 (4)1.2346 (3)0.1885 (3)0.0523 (8)
H80.52111.22400.16340.063*
C90.3133 (5)1.3562 (4)0.1871 (4)0.0620 (10)
H90.36101.42790.16070.074*
C100.1485 (5)1.3722 (4)0.2244 (3)0.0586 (9)
H100.08521.45460.22240.070*
C110.0755 (4)1.2666 (3)0.2649 (3)0.0490 (8)
H11−0.03631.27760.28980.059*
C120.1699 (4)1.1457 (3)0.2678 (3)0.0424 (7)
C13−0.0517 (4)1.0379 (3)0.3337 (3)0.0481 (8)
H13A−0.09551.07850.25740.058*
H13B−0.10401.08880.40090.058*
C14−0.0837 (3)0.9041 (3)0.3722 (3)0.0407 (7)
C15−0.2393 (4)0.8881 (4)0.4305 (3)0.0555 (10)
H15−0.32010.95870.44950.067*
C16−0.2722 (4)0.7667 (5)0.4595 (3)0.0633 (11)
H16−0.37560.75410.49840.076*
C17−0.1513 (5)0.6645 (4)0.4307 (3)0.0626 (11)
H17−0.17240.58190.44750.075*
C180.0027 (4)0.6850 (4)0.3761 (3)0.0486 (8)
H180.08500.61470.35880.058*
Cu10.27619 (4)0.81850 (4)0.27623 (3)0.03697 (13)
N10.5180 (3)0.7571 (3)0.2049 (2)0.0391 (6)
N20.0374 (3)0.8036 (3)0.3473 (2)0.0399 (6)
N30.3327 (3)0.6879 (3)0.5135 (3)0.0522 (7)
N40.2099 (3)0.7793 (3)0.0525 (3)0.0485 (7)
O10.4174 (3)1.0028 (2)0.2342 (2)0.0579 (7)
O20.1161 (3)1.0317 (2)0.3109 (2)0.0541 (6)
O30.3212 (3)0.8020 (2)0.4491 (2)0.0479 (5)
O40.3539 (4)0.6751 (3)0.6242 (2)0.0797 (9)
O50.3246 (3)0.5986 (3)0.4623 (3)0.0697 (7)
O60.2278 (3)0.8736 (2)0.1024 (2)0.0483 (5)
O70.2304 (3)0.6710 (3)0.1141 (2)0.0646 (7)
O80.1728 (3)0.8034 (3)−0.0531 (2)0.0794 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0415 (17)0.044 (2)0.0546 (19)−0.0102 (15)−0.0042 (15)−0.0046 (15)
C20.049 (2)0.052 (2)0.062 (2)0.0012 (16)−0.0054 (17)−0.0134 (17)
C30.0343 (17)0.074 (3)0.0494 (19)−0.0028 (17)0.0021 (15)−0.0115 (18)
C40.0292 (15)0.064 (2)0.0468 (17)−0.0116 (15)−0.0014 (14)0.0001 (16)
C50.0279 (14)0.0487 (19)0.0345 (14)−0.0105 (13)−0.0050 (12)0.0028 (13)
C60.0327 (15)0.050 (2)0.0473 (17)−0.0182 (14)−0.0010 (14)−0.0005 (14)
C70.0417 (16)0.0371 (18)0.0511 (18)−0.0123 (14)−0.0040 (14)−0.0024 (14)
C80.0495 (19)0.047 (2)0.060 (2)−0.0182 (16)−0.0063 (16)−0.0008 (16)
C90.078 (3)0.040 (2)0.075 (2)−0.0217 (19)−0.018 (2)−0.0074 (18)
C100.078 (3)0.0350 (19)0.064 (2)−0.0062 (18)−0.020 (2)−0.0064 (16)
C110.0487 (19)0.047 (2)0.0480 (18)−0.0010 (15)−0.0106 (15)−0.0081 (15)
C120.0436 (17)0.0357 (17)0.0473 (17)−0.0096 (14)−0.0070 (14)−0.0036 (13)
C130.0330 (16)0.056 (2)0.0500 (18)−0.0058 (14)−0.0041 (14)−0.0025 (16)
C140.0326 (15)0.059 (2)0.0325 (14)−0.0162 (15)−0.0063 (12)−0.0020 (14)
C150.0326 (16)0.091 (3)0.0423 (17)−0.0185 (18)−0.0011 (14)−0.0079 (18)
C160.0415 (19)0.107 (3)0.049 (2)−0.042 (2)−0.0039 (16)0.001 (2)
C170.066 (2)0.088 (3)0.0475 (19)−0.054 (2)−0.0157 (18)0.0114 (19)
C180.0539 (19)0.056 (2)0.0432 (17)−0.0319 (17)−0.0090 (15)0.0012 (15)
Cu10.02889 (19)0.0399 (2)0.0400 (2)−0.01305 (15)0.00069 (14)−0.00118 (15)
N10.0303 (12)0.0465 (16)0.0378 (13)−0.0102 (11)−0.0027 (10)−0.0007 (11)
N20.0350 (13)0.0520 (16)0.0342 (12)−0.0213 (12)−0.0021 (11)0.0005 (11)
N30.0310 (13)0.065 (2)0.0543 (17)−0.0149 (13)0.0011 (13)0.0023 (15)
N40.0308 (13)0.071 (2)0.0424 (15)−0.0182 (14)−0.0001 (12)−0.0039 (15)
O10.0366 (12)0.0384 (13)0.0859 (17)−0.0129 (10)0.0161 (12)−0.0025 (12)
O20.0341 (11)0.0381 (13)0.0834 (17)−0.0103 (10)0.0038 (11)−0.0055 (12)
O30.0424 (12)0.0532 (15)0.0473 (12)−0.0145 (11)−0.0035 (10)−0.0044 (11)
O40.0758 (19)0.110 (3)0.0458 (15)−0.0190 (18)−0.0146 (14)0.0102 (15)
O50.0650 (17)0.0577 (18)0.0864 (19)−0.0236 (14)−0.0116 (15)0.0006 (15)
O60.0458 (12)0.0476 (14)0.0471 (12)−0.0159 (11)−0.0040 (10)0.0069 (10)
O70.0703 (17)0.0573 (17)0.0655 (16)−0.0189 (14)−0.0083 (13)−0.0044 (14)
O80.0679 (18)0.134 (3)0.0429 (14)−0.0424 (19)−0.0161 (13)0.0037 (15)

Geometric parameters (Å, °)

C1—N11.344 (4)C13—C141.500 (5)
C1—C21.374 (4)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.380 (5)C14—N21.346 (4)
C2—H20.9300C14—C151.390 (4)
C3—C41.359 (5)C15—C161.371 (6)
C3—H30.9300C15—H150.9300
C4—C51.389 (4)C16—C171.366 (6)
C4—H40.9300C16—H160.9300
C5—N11.355 (4)C17—C181.383 (4)
C5—C61.487 (5)C17—H170.9300
C6—O11.395 (3)C18—N21.348 (4)
C6—H6A0.9700C18—H180.9300
C6—H6B0.9700Cu1—O31.968 (2)
C7—O11.376 (4)Cu1—O61.973 (2)
C7—C81.385 (4)Cu1—N12.062 (3)
C7—C121.387 (4)Cu1—N22.070 (2)
C8—C91.381 (5)Cu1—O22.451 (3)
C8—H80.9300Cu1—O12.491 (2)
C9—C101.371 (5)Cu1—O72.742 (3)
C9—H90.9300N3—O51.229 (4)
C10—C111.384 (5)N3—O41.233 (4)
C10—H100.9300N3—O31.290 (4)
C11—C121.370 (5)N4—O81.223 (4)
C11—H110.9300N4—O71.226 (4)
C12—O21.380 (4)N4—O61.298 (4)
C13—O21.403 (4)
N1—C1—C2122.8 (3)C17—C16—C15119.2 (3)
N1—C1—H1118.6C17—C16—H16120.4
C2—C1—H1118.6C15—C16—H16120.4
C1—C2—C3118.8 (3)C16—C17—C18119.5 (4)
C1—C2—H2120.6C16—C17—H17120.3
C3—C2—H2120.6C18—C17—H17120.3
C4—C3—C2119.2 (3)N2—C18—C17122.1 (4)
C4—C3—H3120.4N2—C18—H18119.0
C2—C3—H3120.4C17—C18—H18119.0
C3—C4—C5120.0 (3)O3—Cu1—O6168.05 (10)
C3—C4—H4120.0O3—Cu1—N191.68 (10)
C5—C4—H4120.0O6—Cu1—N190.92 (10)
N1—C5—C4121.1 (3)O3—Cu1—N291.37 (9)
N1—C5—C6119.8 (3)O6—Cu1—N290.77 (10)
C4—C5—C6119.1 (3)N1—Cu1—N2157.09 (11)
O1—C6—C5110.5 (2)O3—Cu1—O285.99 (10)
O1—C6—H6A109.5O6—Cu1—O283.59 (10)
C5—C6—H6A109.5N1—Cu1—O2131.82 (9)
O1—C6—H6B109.5N2—Cu1—O271.06 (9)
C5—C6—H6B109.5O3—Cu1—O183.11 (9)
H6A—C6—H6B108.1O6—Cu1—O186.74 (9)
O1—C7—C8125.0 (3)N1—Cu1—O170.71 (9)
O1—C7—C12114.9 (3)N2—Cu1—O1132.20 (9)
C8—C7—C12120.0 (3)O2—Cu1—O161.22 (8)
C9—C8—C7119.0 (3)O3—Cu1—O7140.28 (9)
C9—C8—H8120.5O6—Cu1—O751.65 (10)
C7—C8—H8120.5N1—Cu1—O783.49 (10)
C10—C9—C8120.6 (3)N2—Cu1—O779.70 (9)
C10—C9—H9119.7O2—Cu1—O7125.77 (9)
C8—C9—H9119.7O1—Cu1—O7130.79 (8)
C9—C10—C11120.5 (4)C1—N1—C5118.1 (3)
C9—C10—H10119.8C1—N1—Cu1117.6 (2)
C11—C10—H10119.8C5—N1—Cu1124.1 (2)
C12—C11—C10119.3 (3)C14—N2—C18118.0 (3)
C12—C11—H11120.4C14—N2—Cu1124.1 (2)
C10—C11—H11120.4C18—N2—Cu1117.8 (2)
C11—C12—O2126.0 (3)O5—N3—O4123.7 (3)
C11—C12—C7120.5 (3)O5—N3—O3119.2 (3)
O2—C12—C7113.4 (3)O4—N3—O3117.0 (3)
O2—C13—C14108.8 (3)O8—N4—O7123.4 (3)
O2—C13—H13A109.9O8—N4—O6118.3 (3)
C14—C13—H13A109.9O7—N4—O6118.3 (3)
O2—C13—H13B109.9C7—O1—C6117.7 (2)
C14—C13—H13B109.9C7—O1—Cu1123.01 (18)
H13A—C13—H13B108.3C6—O1—Cu1112.23 (19)
N2—C14—C15122.0 (3)C12—O2—C13117.3 (3)
N2—C14—C13119.4 (2)C12—O2—Cu1124.99 (18)
C15—C14—C13118.6 (3)C13—O2—Cu1113.57 (19)
C16—C15—C14119.1 (4)N3—O3—Cu1115.3 (2)
C16—C15—H15120.4N4—O6—Cu1112.66 (19)
C14—C15—H15120.4N4—O7—Cu177.37 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6B···O6i0.972.583.333 (4)135
C13—H13A···O8ii0.972.483.444 (5)172
C13—H13B···O3iii0.972.453.370 (4)159
C17—H17···O5iv0.932.533.412 (5)159

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+2, −z; (iii) −x, −y+2, −z+1; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2792).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Liu, Y., Yan, P.-F., Yu, Y.-H., Hou, G.-F. & Gao, J.-S. (2010). Cryst. Growth Des.10, 1559–1568.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, S., Wang, Y.-J., Ma, D.-S., Liu, Y. & Gao, J.-S. (2010). Acta Cryst. E66, m701. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography