PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m737–m738.
Published online 2010 June 5. doi:  10.1107/S1600536810020064
PMCID: PMC3007087

Diaqua­(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) fumarate tetra­hydrate

Abstract

The asymmetric unit of the title complex salt, [Ni(C10H24N4)(H2O)2](C4H2O4)·4H2O, comprises half of a nickel(II) complex dication, half of a fumarate dianion and two water mol­ecules. Both the NiII cation and fumarate anion lie on a crystallographic inversion center. The NiII ion in the cyclam complex is six-coordinated within a distorted N4O2 octa­hedral geometry, with the four cyclam N atoms in the equatorial plane and the two water mol­ecules in apical positions. The six-membered metalla ring adopts a chair conformation, whereas the five-membered ring exists in a twisted form. In the crystal packing, inter­molecular O—H(...)O hydrogen bonds between the water molecules and the carboxyl groups of the fumarate anions lead to the formation of layers with R 4 2(8) ring motifs. NiII complex cations are sandwiched between two such layers, being held in place by O—H(...)O, N—H(...)O and C—H(...)O hydrogen bonds, consolidating a three-dimensional network.

Related literature

For the background to and the biological activity of cyclam, see: Kim et al. (2006 [triangle]); Hunter et al. (2006 [triangle]); Gerlach et al. (2003 [triangle]); Paisey & Sadler (2004 [triangle]). For a related structure, see: Panneerselvam et al. (1999 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m737-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H24N4)(H2O)2](C4H2O4)·4H2O
  • M r = 481.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m737-efi1.jpg
  • a = 6.9913 (5) Å
  • b = 8.8313 (7) Å
  • c = 9.3147 (8) Å
  • α = 73.165 (2)°
  • β = 79.207 (2)°
  • γ = 85.227 (2)°
  • V = 540.47 (7) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 100 K
  • 0.47 × 0.44 × 0.24 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.665, T max = 0.805
  • 12800 measured reflections
  • 4295 independent reflections
  • 4219 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.133
  • S = 1.30
  • 4295 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.27 e Å−3
  • Δρmin = −1.18 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020064/tk2677sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020064/tk2677Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SLL, CHN and SGT thank the Malaysian Government and the Ministry of Science, Technology and Innovation (MOSTI) (eSc 02–02-11-SF0033). CHN and SLL also thank the UTAR Research Fund. HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL also thanks the Malaysian Government and USM for the award of Research Fellowship.

supplementary crystallographic information

Comment

The antiviral properties of cyclam (1,4,8,11-tetraazacyclotetradecane) have stimulated interest in metal complexes of this ligand (Kim et al., 2006). Besides its antiviral property, [Ni(cyclam)(OAc)2] also has protein recognition potential (Hunter et al., 2006). Amongst the metal ions investigated, coordination of NiII to cyclam rings bridged by 1,4-dimethylene(phenylene) was reported to result in greatest enhancement of its antiviral property (Gerlach et al., 2003). However, the rate of complexation of NiII to cyclam is the poorest compared to CuII, ZnII and CoII (Paisey et al., 2004). In this paper, we report the crystal structure of the title compound, obtained by the reaction of a nickel(II) salt, cyclam and sodium fumarate.

The title compound, Fig. 1, consists of one nickel(II) complex cation, one fumarate anion and four water molecules. Both NiII ion and fumarate anion lie on a crystallographic inversion center, generated by the symmetry codes -x+2, -y+1, -z and -x+1, -y, -z+1, respectively. The NiII complex of cyclam has six-coordination in a distorted octahedral geometry, with the four ligand N atoms (N1/N2/N1A/N2A) almost coplanar with the NiII ion and the two water molecules (O1W & O1WA) in apical positions. The six-membered ring (Ni1/N1/C1–C3/N2) exists in a chair conformation with the puckering parameters (Cremer & Pople, 1975) Q = 0.5900 (14) Å; Θ = 9.05 (13)° and [var phi] = 192.1 (9)°. In the five-membered ring, Ni1/N1/C5/C4A/N2A is twisted about the C5–C4A bond with the puckering parameters (Cremer & Pople, 1975) Q = 0.4382 (14) Å and [var phi] = 271.34 (14)°. This structure is comparable to a closely related structure (Panneerselvam et al., 1999).

In the crystal packing (Fig. 2), intermolecular Owater—H···Ocarboxylate, hydrogen bonds (Table 1) link with the carboxyl groups of the fumarate anions into a two-dimensional layers with R24(8) ring motifs (Bernstein et al., 1995). The NiII complex cations are linked to these layers by Oaquo—H···Owater, Namine—H···Owater, C3—H3B···Ocarboxylate hydrogen bonds (Table 1) to form a three-dimensional network.

Experimental

Nickel chloride hexahydrate (0.24 g, 1 mmol), cyclam (0.22 g, 1 mmol) and sodium fumarate (0.16 g, 1 mmol) were dissolved in water and heated overnight in a water bath at 313 K. Purple crystals were obtained from the yellow solution.

Refinement

N-bound H atoms (H1N1 & H2N1) were located from the difference map and refined freely. The O-bound H atoms were also located in a difference map but were then fixed in their as found positions with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.93 or 0.97 Å; N–H = 0.85 (2) to 0.86 (2) Å; O–H = 0.8482 to 0.8537 Å]. The maximum and minimum residual electron density peaks of 1.300 and -1.178 eÅ-3, respectively, were located 0.36 Å and 0.94 Å from the N1 and Ni1 atoms, respectively.

Figures

Fig. 1.
The molecular structure of the title complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Symmetry-related atoms of the NiII complex ion and fumarate anion are generated by the symmetry codes -x+2, -y+1, -z and -x+1, ...
Fig. 2.
The crystal packing of the title compound, viewed approximately along the a axis, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

[Ni(C10H24N4)(H2O)2](C4H2O4)·4H2OZ = 1
Mr = 481.19F(000) = 258
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9913 (5) ÅCell parameters from 9982 reflections
b = 8.8313 (7) Åθ = 3.8–35.1°
c = 9.3147 (8) ŵ = 0.95 mm1
α = 73.165 (2)°T = 100 K
β = 79.207 (2)°Block, purple
γ = 85.227 (2)°0.47 × 0.44 × 0.24 mm
V = 540.47 (7) Å3

Data collection

Bruker APEXII DUO CCD area-detector diffractometer4295 independent reflections
Radiation source: fine-focus sealed tube4219 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 34.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.665, Tmax = 0.805k = −13→13
12800 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133w = 1/[σ2(Fo2) + (0.0892P)2 + 0.062P] where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
4295 reflectionsΔρmax = 1.27 e Å3
142 parametersΔρmin = −1.18 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.75 (4)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.50000.00000.00889 (11)
O1W0.70136 (13)0.43457 (11)0.07879 (11)0.01471 (17)
H1W10.58190.42840.11990.022*
H2W10.76310.35780.13130.022*
N10.90487 (15)0.73294 (12)−0.04325 (12)0.01220 (18)
N20.97429 (15)0.48188 (12)−0.21216 (12)0.01229 (18)
C10.97192 (19)0.83674 (14)−0.19756 (15)0.0160 (2)
H1A1.11170.8476−0.21250.019*
H1B0.91080.9411−0.20680.019*
C20.9231 (2)0.77130 (15)−0.32091 (15)0.0188 (2)
H2A0.78530.7497−0.29800.023*
H2B0.94610.8528−0.41730.023*
C31.0368 (2)0.62134 (16)−0.34023 (14)0.0168 (2)
H3A1.01780.6032−0.43440.020*
H3B1.17460.6357−0.34740.020*
C41.08394 (18)0.33580 (15)−0.22827 (14)0.0154 (2)
H4A1.22200.3563−0.25780.018*
H4B1.04240.3011−0.30700.018*
C50.95195 (18)0.79227 (14)0.07821 (15)0.0144 (2)
H5A0.87130.88550.08550.017*
H5B1.08730.82170.05450.017*
O10.52695 (16)0.26163 (11)0.55707 (11)0.01632 (18)
O20.52311 (19)0.08177 (12)0.78098 (11)0.0224 (2)
C110.51455 (17)0.12258 (13)0.64080 (13)0.0124 (2)
C120.48943 (17)−0.00891 (13)0.57443 (12)0.0121 (2)
H12A0.4574−0.10800.64080.014*
O2W0.52940 (14)0.20503 (11)0.01387 (11)0.01441 (17)
H1W20.58310.1689−0.05970.022*
H2W20.52510.12970.09540.022*
O3W0.42354 (14)0.50357 (11)0.31238 (11)0.01463 (18)
H1W30.41700.58980.33620.022*
H2W30.39930.42910.39480.022*
H1N10.779 (3)0.719 (3)−0.034 (3)0.018 (5)*
H1N20.849 (3)0.463 (3)−0.210 (3)0.015 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.00948 (13)0.00806 (13)0.00991 (13)−0.00033 (7)−0.00201 (7)−0.00347 (8)
O1W0.0114 (4)0.0161 (4)0.0187 (4)−0.0023 (3)−0.0003 (3)−0.0089 (3)
N10.0115 (4)0.0103 (4)0.0151 (4)−0.0006 (3)−0.0026 (3)−0.0038 (3)
N20.0125 (4)0.0134 (4)0.0120 (4)−0.0008 (3)−0.0025 (3)−0.0047 (3)
C10.0183 (5)0.0108 (4)0.0175 (5)−0.0020 (4)−0.0043 (4)−0.0006 (4)
C20.0237 (6)0.0158 (5)0.0163 (5)−0.0013 (4)−0.0087 (4)−0.0003 (4)
C30.0212 (5)0.0180 (5)0.0111 (4)−0.0034 (4)−0.0030 (4)−0.0029 (4)
C40.0170 (5)0.0161 (5)0.0153 (5)−0.0003 (4)−0.0011 (4)−0.0089 (4)
C50.0143 (5)0.0117 (4)0.0193 (5)−0.0008 (3)−0.0023 (4)−0.0080 (4)
O10.0251 (5)0.0105 (4)0.0131 (4)−0.0020 (3)−0.0028 (3)−0.0029 (3)
O20.0434 (6)0.0145 (4)0.0110 (4)−0.0018 (4)−0.0080 (4)−0.0041 (3)
C110.0158 (5)0.0113 (4)0.0110 (4)−0.0002 (3)−0.0017 (3)−0.0050 (3)
C120.0153 (5)0.0107 (4)0.0105 (4)−0.0004 (3)−0.0019 (3)−0.0037 (3)
O2W0.0174 (4)0.0131 (4)0.0146 (4)−0.0020 (3)−0.0032 (3)−0.0061 (3)
O3W0.0175 (4)0.0144 (4)0.0134 (4)−0.0017 (3)−0.0034 (3)−0.0052 (3)

Geometric parameters (Å, °)

Ni1—N1i2.0564 (10)C2—H2B0.9700
Ni1—N12.0565 (10)C3—H3A0.9700
Ni1—N22.0699 (10)C3—H3B0.9700
Ni1—N2i2.0699 (10)C4—C5i1.5153 (18)
Ni1—O1W2.1478 (9)C4—H4A0.9700
Ni1—O1Wi2.1478 (9)C4—H4B0.9700
O1W—H1W10.8499C5—C4i1.5153 (18)
O1W—H2W10.8506C5—H5A0.9700
N1—C51.4747 (16)C5—H5B0.9700
N1—C11.4772 (17)O1—C111.2496 (14)
N1—H1N10.88 (2)O2—C111.2615 (14)
N2—C31.4745 (16)C11—C121.5007 (16)
N2—C41.4761 (16)C12—C12ii1.330 (2)
N2—H1N20.90 (2)C12—H12A0.9300
C1—C21.5279 (19)O2W—H1W20.8501
C1—H1A0.9700O2W—H2W20.8496
C1—H1B0.9700O3W—H1W30.8482
C2—C31.5253 (19)O3W—H2W30.8537
C2—H2A0.9700
N1i—Ni1—N1180.0C2—C1—H1B109.2
N1i—Ni1—N285.49 (4)H1A—C1—H1B107.9
N1—Ni1—N294.51 (4)C3—C2—C1115.74 (11)
N1i—Ni1—N2i94.51 (4)C3—C2—H2A108.3
N1—Ni1—N2i85.49 (4)C1—C2—H2A108.3
N2—Ni1—N2i179.999 (1)C3—C2—H2B108.3
N1i—Ni1—O1W91.94 (4)C1—C2—H2B108.3
N1—Ni1—O1W88.06 (4)H2A—C2—H2B107.4
N2—Ni1—O1W88.73 (4)N2—C3—C2111.79 (10)
N2i—Ni1—O1W91.27 (4)N2—C3—H3A109.3
N1i—Ni1—O1Wi88.06 (4)C2—C3—H3A109.3
N1—Ni1—O1Wi91.94 (4)N2—C3—H3B109.3
N2—Ni1—O1Wi91.27 (4)C2—C3—H3B109.3
N2i—Ni1—O1Wi88.73 (4)H3A—C3—H3B107.9
O1W—Ni1—O1Wi180.0N2—C4—C5i109.50 (10)
Ni1—O1W—H1W1165.2N2—C4—H4A109.8
Ni1—O1W—H2W177.0C5i—C4—H4A109.8
H1W1—O1W—H2W1107.7N2—C4—H4B109.8
C5—N1—C1113.05 (9)C5i—C4—H4B109.8
C5—N1—Ni1106.83 (7)H4A—C4—H4B108.2
C1—N1—Ni1116.66 (8)N1—C5—C4i109.30 (9)
C5—N1—H1N1112.6 (16)N1—C5—H5A109.8
C1—N1—H1N1108.2 (16)C4i—C5—H5A109.8
Ni1—N1—H1N198.8 (16)N1—C5—H5B109.8
C3—N2—C4112.55 (10)C4i—C5—H5B109.8
C3—N2—Ni1114.93 (8)H5A—C5—H5B108.3
C4—N2—Ni1105.98 (7)O1—C11—O2124.55 (11)
C3—N2—H1N2109.8 (15)O1—C11—C12119.64 (10)
C4—N2—H1N2105.3 (14)O2—C11—C12115.81 (10)
Ni1—N2—H1N2107.8 (15)C12ii—C12—C11123.39 (13)
N1—C1—C2111.84 (10)C12ii—C12—H12A118.3
N1—C1—H1A109.2C11—C12—H12A118.3
C2—C1—H1A109.2H1W2—O2W—H2W2107.7
N1—C1—H1B109.2H1W3—O3W—H2W3107.5
N2—Ni1—N1—C5−166.65 (8)O1W—Ni1—N2—C4−106.83 (7)
N2i—Ni1—N1—C513.35 (8)O1Wi—Ni1—N2—C473.17 (7)
O1W—Ni1—N1—C5104.78 (8)C5—N1—C1—C2179.36 (10)
O1Wi—Ni1—N1—C5−75.22 (8)Ni1—N1—C1—C254.91 (12)
N2—Ni1—N1—C1−39.09 (9)N1—C1—C2—C3−69.36 (15)
N2i—Ni1—N1—C1140.91 (9)C4—N2—C3—C2−179.50 (10)
O1W—Ni1—N1—C1−127.66 (8)Ni1—N2—C3—C2−58.06 (12)
O1Wi—Ni1—N1—C152.34 (8)C1—C2—C3—N271.78 (14)
N1i—Ni1—N2—C3−139.74 (9)C3—N2—C4—C5i166.48 (10)
N1—Ni1—N2—C340.26 (9)Ni1—N2—C4—C5i40.06 (11)
O1W—Ni1—N2—C3128.21 (9)C1—N1—C5—C4i−168.52 (10)
O1Wi—Ni1—N2—C3−51.79 (9)Ni1—N1—C5—C4i−38.86 (11)
N1i—Ni1—N2—C4−14.78 (7)O1—C11—C12—C12ii11.2 (2)
N1—Ni1—N2—C4165.22 (7)O2—C11—C12—C12ii−168.24 (16)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3W0.852.172.8047 (14)131
O2W—H1W2···O2iii0.851.982.7026 (14)142
O2W—H2W2···O2ii0.851.912.7000 (15)154
O3W—H1W3···O1iv0.851.962.7633 (14)157
O3W—H2W3···O10.852.062.7968 (14)144
N1—H1N1···O2Wv0.88 (2)2.19 (2)3.0153 (15)154 (2)
N2—H1N2···O3Wv0.90 (2)2.25 (2)3.0769 (15)153 (2)
C3—H3B···O1i0.972.603.3850 (18)138

Symmetry codes: (iii) x, y, z−1; (ii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (i) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2677).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Gerlach, L. O., Jakbsen, J. S., Jensen, K. P., Rosenkilde, M. R., Skerlj, R. T., Ryde, U., Bridger, G. J. & Schwartz, T. W. (2003). Biochemistry, 42, 710–717. [PubMed]
  • Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, A. M., Moggach, S., White, F., Walkinshaw, M. D., Parsons, S. & Sadler, P. J. (2006). Chem. Eur. J.13, 30–40. [PubMed]
  • Kim, J. C., Lough, A. J., Park, H. & Kang, Y. C. (2006). Inorg. Chem. Commun.9, 514–517.
  • Paisey, S. J. & Sadler, P. J. (2004). Chem. Commun pp. 306–307. [PubMed]
  • Panneerselvam, K., Lu, T.-H., Chi, T.-Y., Liao, F.-L. & Chung, C.-S. (1999). Acta Cryst. C55, 543–545.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography