PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1642.
Published online 2010 June 16. doi:  10.1107/S160053681002129X
PMCID: PMC3007083

N-(3,4-Dichloro­phen­yl)maleamic acid

Abstract

The asymmetric unit of the title compound, C10H7Cl2NO3, contains two unique mol­ecules, both being stabilized by an intra­molecular O—H(...)O hydrogen bond within their maleamic units. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains extending along [1An external file that holds a picture, illustration, etc.
Object name is e-66-o1642-efi1.jpg An external file that holds a picture, illustration, etc.
Object name is e-66-o1642-efi1.jpg] which are further assembled into sheets via short inter­molecular C—Cl(...)O=C contacts [3.102 (2) and 3.044 (2) Å].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009 [triangle], 2010 [triangle]); Lo & Ng (2009 [triangle]); Prasad et al. (2002 [triangle]); Shakuntala et al. (2009 [triangle]). For short halogen–oxygen contacts, see: Fourmigué (2009 [triangle]); Legon (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1642-scheme1.jpg

Experimental

Crystal data

  • C10H7Cl2NO3
  • M r = 260.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1642-efi3.jpg
  • a = 7.1959 (7) Å
  • b = 11.6234 (10) Å
  • c = 13.1399 (14) Å
  • α = 85.116 (8)°
  • β = 75.060 (9)°
  • γ = 81.205 (7)°
  • V = 1048.19 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 295 K
  • 0.54 × 0.28 × 0.11 mm

Data collection

  • Oxford Diffraction Gemini R, CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009 [triangle]) T min = 0.870, T max = 0.969
  • 11933 measured reflections
  • 3897 independent reflections
  • 3075 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.083
  • S = 1.03
  • 3897 reflections
  • 295 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002129X/xu2768sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002129X/xu2768Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

In the present work, as a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2009, 2010; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,4-dichlorophenyl)maleamic acid (I) has been determined (Fig. 1).

The asymmetric unit of the cell contains two molecules. In the first molecule, which significantly deviates from planarity, the torsion angle C6—C5—N1—C1 = 24.9 (3)° defines the orientation of the phenyl ring towards the central amide group —NHCO—. The atoms of maleamic acid moiety do not fit very well to a plane (r.m.s. deviation = 0.077\%A). It makes a dihedral angle of 27.5 (1)° with the phenyl ring. The geometry of the second molecule is almost planar as shown by the small dihedral angle of 1.9 (1)° formed by the planes of phenyl ring and maleamic acid moiety. Each maleamic acid moiety includes a short intramolecular hydrogen bond O—H···O (Table 1). The bond lengths C2–C3 = 1.336 (3) and C22–C23 = 1.333 (3)\%A clearly indicate the double bond character.

In the crystal structure (Fig. 2), the intermolecular N–H···O hydrogen bonds link the molecules into chains extending along the [1 - 1 -1]direction. These chains are further assembled by short Cl···O contacts of the length 3.102 (2) and 3.044 (2)Å to form the sheet like structure.

Our data for the C–Cl···O halogen bonds are in agreement with the observations of others (Fourmigué, 2009, Legon, 1999).

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3,4-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dichloroaniline. The resultant solid N-(3,4-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

Block like colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

H atoms bonded to C and N atoms were positioned with idealized geometry (C—H = 0.93 Å, N—H = 0.86 Å) and refined using a riding model. H atoms of carboxyl groups were visible in difference maps and were refined freely with O—H distances restrained to 0.90 (3) Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and short intramolecular O—H···O ...
Fig. 2.
Part of the crystal structure of (I) showing the two-dimensional networks of molecules linked by N–H···O hydrogen bonds and short Cl···O contacts. Symmetry codes (i): -x + 2, -y + 1, -z + 1; (ii) ...

Crystal data

C10H7Cl2NO3Z = 4
Mr = 260.07F(000) = 528
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1959 (7) ÅCell parameters from 5934 reflections
b = 11.6234 (10) Åθ = 1.6–28.1°
c = 13.1399 (14) ŵ = 0.61 mm1
α = 85.116 (8)°T = 295 K
β = 75.060 (9)°Block, colourless
γ = 81.205 (7)°0.54 × 0.28 × 0.11 mm
V = 1048.19 (18) Å3

Data collection

Oxford Diffraction Gemini R, CCD diffractometer3897 independent reflections
graphite3075 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.026
ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009)h = −8→8
Tmin = 0.870, Tmax = 0.969k = −14→14
11933 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3773P] where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6769 (3)0.57748 (17)0.60126 (16)0.0368 (5)
C20.6821 (3)0.45235 (17)0.58531 (16)0.0408 (5)
H20.74950.42690.5190.049*
C30.6022 (3)0.37134 (17)0.65399 (16)0.0416 (5)
H30.62570.29730.62770.05*
C40.4826 (3)0.37742 (17)0.76479 (16)0.0386 (5)
C50.7512 (3)0.76165 (16)0.50046 (15)0.0327 (4)
C60.7421 (3)0.83188 (16)0.58292 (15)0.0330 (4)
H60.73530.79950.65080.04*
C70.7433 (3)0.95030 (16)0.56238 (15)0.0313 (4)
C80.7540 (3)1.00008 (16)0.46162 (16)0.0329 (4)
C90.7642 (3)0.92903 (18)0.38049 (16)0.0389 (5)
H90.77250.96140.31250.047*
C100.7623 (3)0.81111 (18)0.39948 (16)0.0380 (5)
H100.76840.76420.34450.046*
N10.7501 (2)0.63960 (14)0.51337 (13)0.0378 (4)
H1N0.80280.60060.4580.045*
O10.6107 (2)0.62179 (12)0.68815 (12)0.0503 (4)
O20.4523 (3)0.47244 (13)0.81526 (12)0.0562 (5)
H2A0.506 (4)0.530 (2)0.776 (2)0.084*
O30.4146 (2)0.29115 (13)0.80735 (12)0.0528 (4)
Cl10.73228 (8)1.03670 (4)0.66563 (4)0.04481 (16)
Cl20.75788 (8)1.14770 (4)0.43458 (4)0.04553 (16)
C210.8620 (3)0.74292 (16)0.90501 (15)0.0325 (4)
C220.8539 (3)0.61620 (16)0.92152 (16)0.0357 (5)
H220.79040.59090.98880.043*
C230.9263 (3)0.53360 (17)0.85204 (16)0.0386 (5)
H230.90450.4590.87950.046*
C241.0349 (3)0.53723 (17)0.73945 (16)0.0375 (5)
C250.7588 (3)0.92609 (15)1.00107 (15)0.0286 (4)
C260.8324 (3)1.00323 (16)0.91955 (15)0.0309 (4)
H260.90010.97610.85380.037*
C270.8038 (3)1.12116 (16)0.93712 (15)0.0314 (4)
C280.7036 (3)1.16303 (16)1.03496 (16)0.0335 (4)
C290.6323 (3)1.08583 (17)1.11585 (16)0.0383 (5)
H290.5661.11311.18170.046*
C300.6590 (3)0.96819 (17)1.09950 (15)0.0350 (5)
H300.61010.91651.15440.042*
N20.7781 (2)0.80432 (13)0.99092 (12)0.0317 (4)
H2N0.72980.76451.04710.038*
O40.9388 (3)0.78924 (12)0.81921 (11)0.0524 (4)
O51.0862 (3)0.63417 (13)0.69133 (12)0.0544 (5)
H5A1.039 (4)0.693 (2)0.735 (2)0.082*
O61.0751 (3)0.44786 (13)0.69212 (12)0.0558 (4)
Cl30.89907 (9)1.21571 (4)0.83501 (4)0.04603 (16)
Cl40.66462 (9)1.31041 (4)1.05637 (5)0.05015 (17)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0428 (12)0.0320 (10)0.0322 (11)−0.0102 (9)0.0005 (9)−0.0035 (9)
C20.0538 (13)0.0333 (11)0.0300 (11)−0.0105 (10)0.0036 (10)−0.0078 (9)
C30.0575 (14)0.0274 (10)0.0353 (12)−0.0093 (9)0.0006 (10)−0.0069 (9)
C40.0474 (13)0.0307 (11)0.0344 (11)−0.0083 (9)−0.0027 (10)−0.0021 (9)
C50.0353 (11)0.0302 (10)0.0297 (11)−0.0107 (8)0.0011 (8)−0.0020 (8)
C60.0381 (11)0.0334 (10)0.0262 (10)−0.0089 (9)−0.0032 (9)−0.0009 (8)
C70.0317 (10)0.0309 (10)0.0296 (11)−0.0059 (8)−0.0019 (8)−0.0075 (8)
C80.0291 (10)0.0296 (10)0.0349 (11)−0.0060 (8)0.0017 (8)0.0001 (8)
C90.0467 (13)0.0407 (12)0.0258 (10)−0.0109 (10)−0.0008 (9)0.0012 (9)
C100.0472 (13)0.0381 (11)0.0267 (11)−0.0140 (9)0.0001 (9)−0.0049 (9)
N10.0530 (11)0.0285 (9)0.0271 (9)−0.0117 (8)0.0035 (8)−0.0061 (7)
O10.0782 (11)0.0318 (8)0.0324 (8)−0.0177 (7)0.0094 (8)−0.0081 (6)
O20.0877 (13)0.0356 (9)0.0338 (9)−0.0224 (8)0.0155 (8)−0.0073 (7)
O30.0753 (11)0.0364 (8)0.0393 (9)−0.0224 (8)0.0059 (8)0.0026 (7)
Cl10.0622 (4)0.0363 (3)0.0360 (3)−0.0100 (2)−0.0076 (3)−0.0109 (2)
Cl20.0530 (3)0.0293 (3)0.0473 (3)−0.0066 (2)−0.0007 (3)0.0026 (2)
C210.0427 (12)0.0258 (10)0.0268 (10)−0.0041 (8)−0.0048 (9)−0.0029 (8)
C220.0488 (13)0.0272 (10)0.0272 (10)−0.0082 (9)−0.0009 (9)−0.0010 (8)
C230.0544 (13)0.0228 (10)0.0348 (11)−0.0071 (9)−0.0032 (10)−0.0022 (8)
C240.0469 (13)0.0291 (11)0.0329 (11)−0.0018 (9)−0.0044 (9)−0.0052 (9)
C250.0314 (10)0.0249 (9)0.0295 (10)−0.0034 (8)−0.0065 (8)−0.0053 (8)
C260.0367 (11)0.0288 (10)0.0252 (10)−0.0041 (8)−0.0031 (8)−0.0059 (8)
C270.0339 (11)0.0269 (10)0.0319 (11)−0.0072 (8)−0.0043 (9)0.0002 (8)
C280.0377 (11)0.0246 (9)0.0358 (11)−0.0019 (8)−0.0041 (9)−0.0091 (8)
C290.0429 (12)0.0335 (11)0.0326 (11)−0.0040 (9)0.0033 (9)−0.0101 (9)
C300.0418 (12)0.0308 (10)0.0277 (10)−0.0073 (9)0.0016 (9)−0.0023 (8)
N20.0435 (10)0.0240 (8)0.0238 (8)−0.0070 (7)0.0001 (7)−0.0025 (6)
O40.0877 (12)0.0262 (7)0.0300 (8)−0.0089 (8)0.0107 (8)−0.0038 (6)
O50.0841 (12)0.0319 (8)0.0335 (9)−0.0109 (8)0.0133 (8)−0.0067 (7)
O60.0867 (12)0.0331 (8)0.0387 (9)−0.0062 (8)0.0036 (8)−0.0147 (7)
Cl30.0647 (4)0.0296 (3)0.0360 (3)−0.0111 (2)0.0033 (3)0.0010 (2)
Cl40.0639 (4)0.0256 (3)0.0524 (3)−0.0049 (2)0.0037 (3)−0.0129 (2)

Geometric parameters (Å, °)

C1—O11.241 (2)C21—O41.238 (2)
C1—N11.339 (3)C21—N21.342 (2)
C1—C21.481 (3)C21—C221.478 (3)
C2—C31.336 (3)C22—C231.333 (3)
C2—H20.93C22—H220.93
C3—C41.489 (3)C23—C241.485 (3)
C3—H30.93C23—H230.93
C4—O31.213 (2)C24—O61.214 (2)
C4—O21.298 (2)C24—O51.300 (2)
C5—C101.388 (3)C25—C261.386 (3)
C5—C61.394 (3)C25—C301.396 (3)
C5—N11.415 (2)C25—N21.415 (2)
C6—C71.381 (3)C26—C271.385 (3)
C6—H60.93C26—H260.93
C7—C81.387 (3)C27—C281.390 (3)
C7—Cl11.7343 (19)C27—Cl31.7271 (19)
C8—C91.384 (3)C28—C291.377 (3)
C8—Cl21.7253 (19)C28—Cl41.7282 (19)
C9—C101.374 (3)C29—C301.379 (3)
C9—H90.93C29—H290.93
C10—H100.93C30—H300.93
N1—H1N0.86N2—H2N0.86
O2—H2A0.89 (2)O5—H5A0.90 (2)
O1—C1—N1122.47 (18)O4—C21—N2122.46 (17)
O1—C1—C2123.38 (18)O4—C21—C22123.11 (17)
N1—C1—C2114.15 (18)N2—C21—C22114.43 (17)
C3—C2—C1128.32 (19)C23—C22—C21128.12 (19)
C3—C2—H2115.8C23—C22—H22115.9
C1—C2—H2115.8C21—C22—H22115.9
C2—C3—C4132.04 (19)C22—C23—C24132.64 (19)
C2—C3—H3114C22—C23—H23113.7
C4—C3—H3114C24—C23—H23113.7
O3—C4—O2120.48 (19)O6—C24—O5119.99 (19)
O3—C4—C3118.52 (18)O6—C24—C23118.96 (18)
O2—C4—C3121.00 (18)O5—C24—C23121.05 (17)
C10—C5—C6119.89 (18)C26—C25—C30119.63 (17)
C10—C5—N1116.76 (17)C26—C25—N2123.62 (17)
C6—C5—N1123.36 (18)C30—C25—N2116.75 (17)
C7—C6—C5119.00 (18)C27—C26—C25119.21 (18)
C7—C6—H6120.5C27—C26—H26120.4
C5—C6—H6120.5C25—C26—H26120.4
C6—C7—C8121.28 (18)C26—C27—C28121.11 (18)
C6—C7—Cl1118.55 (15)C26—C27—Cl3118.51 (15)
C8—C7—Cl1120.16 (15)C28—C27—Cl3120.37 (14)
C9—C8—C7118.99 (18)C29—C28—C27119.39 (17)
C9—C8—Cl2119.23 (15)C29—C28—Cl4119.48 (15)
C7—C8—Cl2121.78 (15)C27—C28—Cl4121.13 (15)
C10—C9—C8120.57 (19)C28—C29—C30120.20 (18)
C10—C9—H9119.7C28—C29—H29119.9
C8—C9—H9119.7C30—C29—H29119.9
C9—C10—C5120.27 (19)C29—C30—C25120.46 (18)
C9—C10—H10119.9C29—C30—H30119.8
C5—C10—H10119.9C25—C30—H30119.8
C1—N1—C5127.91 (17)C21—N2—C25128.46 (16)
C1—N1—H1N116C21—N2—H2N115.8
C5—N1—H1N116C25—N2—H2N115.8
C4—O2—H2A112 (2)C24—O5—H5A109.4 (19)
O1—C1—C2—C37.9 (4)O4—C21—C22—C231.3 (4)
N1—C1—C2—C3−172.1 (2)N2—C21—C22—C23−179.0 (2)
C1—C2—C3—C41.2 (4)C21—C22—C23—C240.0 (4)
C2—C3—C4—O3174.2 (2)C22—C23—C24—O6−175.8 (2)
C2—C3—C4—O2−6.2 (4)C22—C23—C24—O53.9 (4)
C10—C5—C6—C70.3 (3)C30—C25—C26—C27−0.6 (3)
N1—C5—C6—C7−179.75 (19)N2—C25—C26—C27179.24 (18)
C5—C6—C7—C8−0.2 (3)C25—C26—C27—C280.2 (3)
C5—C6—C7—Cl1−179.91 (15)C25—C26—C27—Cl3179.23 (15)
C6—C7—C8—C9−0.2 (3)C26—C27—C28—C290.3 (3)
Cl1—C7—C8—C9179.47 (15)Cl3—C27—C28—C29−178.67 (16)
C6—C7—C8—Cl2−179.39 (15)C26—C27—C28—Cl4−178.99 (16)
Cl1—C7—C8—Cl20.3 (2)Cl3—C27—C28—Cl42.0 (3)
C7—C8—C9—C100.5 (3)C27—C28—C29—C30−0.5 (3)
Cl2—C8—C9—C10179.72 (16)Cl4—C28—C29—C30178.78 (17)
C8—C9—C10—C5−0.4 (3)C28—C29—C30—C250.2 (3)
C6—C5—C10—C90.0 (3)C26—C25—C30—C290.3 (3)
N1—C5—C10—C9−179.96 (19)N2—C25—C30—C29−179.47 (18)
O1—C1—N1—C5−5.8 (4)O4—C21—N2—C250.7 (3)
C2—C1—N1—C5174.17 (19)C22—C21—N2—C25−179.03 (18)
C10—C5—N1—C1−155.1 (2)C26—C25—N2—C21−1.7 (3)
C6—C5—N1—C124.9 (3)C30—C25—N2—C21178.07 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O6i0.862.032.869 (2)165
N2—H2N···O3ii0.862.032.873 (2)166
O2—H2A···O10.89 (2)1.61 (2)2.496 (2)171 (3)
O5—H5A···O40.90 (2)1.59 (2)2.492 (2)174 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2768).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci.13, 36–45.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2874. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51. [PMC free article] [PubMed]
  • Legon, A. C. (1999). Angew. Chem. Int. Ed.38, 2686–2714. [PubMed]
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED Oxford Diffraction Ltd, Yarnton, England.
  • Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.
  • Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography