PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m736.
Published online 2010 June 5. doi:  10.1107/S160053681002057X
PMCID: PMC3007073

Hexa­kis­(4-acetyl­pyridinium) octa­deca­chloridotetra­anti­monate(III)

Abstract

The title compound, (C7H8NO)6[Sb4Cl18], contains centrosymmetric hexa­anions built up from four vertex-sharing alternating SbCl5 square-based pyramids and highly distorted SbCl6 octa­hedra when long (<3.2 Å) ‘secondary’ Sb—Cl inter­actions are taken into account. The inter-polyhedral Sb—Cl bonds define a square-shape. In the crystal, the components are linked by N—H(...)Cl, C—H(...)Cl and C—H(...)O hydrogen bonds, generating a three-dimensional network.

Related literature

For general background to phase transitions in coordination networks, see: Li et al. (2008 [triangle]); Zhang et al. (2009 [triangle]). For crystal structures containing the 4-acetyl­pyridinium cation, see: Fu (2009a [triangle],b [triangle]); Majerz et al. (1991 [triangle]); Pang et al. (1994 [triangle]); Steffen & Palenik (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m736-scheme1.jpg

Experimental

Crystal data

  • (C7H8NO)6[Sb4Cl18]
  • M r = 1857.96
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m736-efi1.jpg
  • a = 9.0589 (18) Å
  • b = 13.838 (3) Å
  • c = 15.128 (3) Å
  • α = 108.29 (3)°
  • β = 98.00 (3)°
  • γ = 107.10 (3)°
  • V = 1664.1 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.37 mm−1
  • T = 298 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.430, T max = 0.622
  • 17638 measured reflections
  • 7613 independent reflections
  • 6371 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.070
  • S = 1.04
  • 7613 reflections
  • 343 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002057X/hb5440sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002057X/hb5440Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009), organic-inorganic hybrids, we studied the dielectric properties of the title compound, unfortunately, there was no distinct anomaly observed from 93 K to 400 K, (m.p. 421–423 K), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. In this article, the crystal structure of (I) has been presented.

4-Acetylpyridine may be used as a ligand in coordination compounds e.g. with Zn (Steffen & Palenik, 1977) or Ni (Pang et al., 1994). The crystal structures of 4-acetylpyridine together with inorganic acids are also known e.g. with sulfuric acid (Fu, 2009b) and perchloric acid (Fu, 2009a).

The cell unit of the title compound is made up of six almost planar protonated 4-acetylpyridinium cations and a [Sb4Cl18]6- anion (Fig. 1.).In the coordinate anion of [Sb4Cl18]6-, antimony(III) atoms have two kinds of coordination pattern. Sb3+(2) coordinated with five Cl ions construct a distorted tetragonal pyramidal structure, composing two briding and three terminal Cl atoms. There are Cl—Sb secondary bonds by the linkage between the Sb3+(1)···Cl5 and Sb3+(1)···Cl6, with the bond lengths of these secondary bonds 3.0210 (11)Å and 3.1280 (11) Å, respectively, compared to the normal coordination bonds of Sb—Cl 2.3516 (12)Å to 2.8937 (11) Å. Owing to these secondary bonds, the coordination number of the central ion Sb3+(1) increases to six, and it adopts a distorted octahedral geometry.

The tridimensional network arrangement in the crystal structure of (I) is mainly determined by relatively strong and directional hydrogen bonds (Table. 1),

Experimental

2.28 g (10 mmol) SbCl3 was firstly dissolved in 10 ml 1:1 HCl solution, to which 2.42 g (20 mmol) 4-acetylpyridine ethanol solution was then added under stirring. Hydrochloric acid was added until the precipitated substrates disappeared. The acid solution was allowed to slowly evaporate at room temperature until colorless prisms of (I) were grown.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),

Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (all H atoms have been omitted for clarity). Unlabelled atoms are generated by the symmetry operation (2–x, 1–y, 1–z).
Fig. 2.
A view of the packing of (I), stacking along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

(C7H8NO)6[Sb4Cl18]Z = 1
Mr = 1857.96F(000) = 900
Triclinic, P1Dx = 1.854 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0589 (18) ÅCell parameters from 8056 reflections
b = 13.838 (3) Åθ = 3.1–27.7°
c = 15.128 (3) ŵ = 2.37 mm1
α = 108.29 (3)°T = 298 K
β = 98.00 (3)°Prism, colourless
γ = 107.10 (3)°0.40 × 0.30 × 0.20 mm
V = 1664.1 (6) Å3

Data collection

Rigaku SCXmini diffractometer7613 independent reflections
Radiation source: fine-focus sealed tube6371 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −11→11
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −17→17
Tmin = 0.430, Tmax = 0.622l = −19→19
17638 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0307P)2 + 0.5066P] where P = (Fo2 + 2Fc2)/3
7613 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7595 (3)0.1417 (2)0.15768 (17)0.0544 (6)
N10.9897 (4)0.2973 (3)−0.0627 (2)0.0573 (8)
H1D1.03770.3389−0.08980.069*
C30.8404 (4)0.1681 (3)0.0233 (2)0.0408 (7)
C60.9436 (5)0.3405 (3)0.0152 (3)0.0574 (10)
H6A0.96160.41470.03860.069*
C40.8871 (4)0.1248 (3)−0.0588 (2)0.0490 (8)
H4A0.86600.0503−0.08550.059*
C70.8713 (4)0.2783 (3)0.0610 (3)0.0525 (9)
H7A0.84280.30940.11690.063*
C50.9634 (5)0.1912 (3)−0.0998 (2)0.0557 (9)
H5A0.99760.1629−0.15400.067*
C20.7623 (4)0.0986 (3)0.0748 (3)0.0497 (8)
Sb10.86744 (2)0.350428 (15)0.674838 (14)0.03137 (6)
Cl40.83619 (12)0.17158 (6)0.67419 (6)0.0519 (2)
Cl30.74694 (11)0.39130 (8)0.80769 (6)0.0528 (2)
Cl20.61006 (10)0.27520 (7)0.56102 (6)0.0543 (2)
C10.6945 (7)−0.0208 (3)0.0234 (4)0.110 (2)
H1A0.6487−0.05450.06480.165*
H1B0.7775−0.04670.00540.165*
H1C0.6133−0.0390−0.03330.165*
Cl11.15940 (10)0.43033 (7)0.82937 (7)0.0529 (2)
Sb20.93951 (2)0.785682 (15)0.693125 (14)0.03208 (6)
Cl70.67862 (9)0.73910 (7)0.60241 (6)0.0474 (2)
Cl90.83859 (11)0.82021 (8)0.83764 (6)0.0544 (2)
Cl80.99930 (12)0.97530 (7)0.70831 (7)0.0595 (2)
Cl50.86213 (12)0.56019 (7)0.65539 (7)0.0577 (2)
Cl61.00732 (11)0.73440 (8)0.50601 (6)0.0557 (2)
C100.6128 (4)0.9155 (3)0.3188 (2)0.0436 (8)
C140.6375 (4)0.8208 (3)0.2737 (3)0.0525 (9)
H14A0.59130.78140.20820.063*
N20.7927 (4)0.8408 (3)0.4180 (3)0.0584 (8)
H2A0.85110.81720.44930.070*
C120.7702 (5)0.9308 (3)0.4648 (3)0.0595 (10)
H12A0.81500.96690.53080.071*
C110.6807 (4)0.9711 (3)0.4161 (3)0.0512 (9)
H11A0.66591.03550.44840.061*
C130.7289 (5)0.7851 (3)0.3245 (3)0.0610 (10)
H13A0.74710.72160.29390.073*
O20.4633 (4)0.9034 (3)0.1749 (2)0.0794 (9)
C90.5172 (4)0.9568 (3)0.2594 (3)0.0537 (9)
C80.4958 (6)1.0602 (4)0.3054 (3)0.0865 (15)
H8A0.43261.07480.25820.130*
H8B0.59821.11800.33270.130*
H8C0.44241.05550.35530.130*
C180.4716 (4)0.5259 (3)0.7037 (3)0.0540 (9)
H18A0.54030.49880.73130.065*
N30.3089 (4)0.5204 (3)0.5680 (2)0.0584 (8)
H3A0.26740.49050.50690.070*
C170.4345 (4)0.6097 (2)0.7603 (2)0.0418 (7)
C160.4972 (4)0.6600 (3)0.8688 (3)0.0587 (10)
C210.3347 (4)0.6486 (3)0.7166 (3)0.0537 (9)
H21A0.31000.70660.75340.064*
C150.5935 (6)0.6125 (4)0.9162 (3)0.0897 (15)
H15A0.62500.65260.98450.135*
H15B0.68700.61610.89240.135*
H15C0.53140.53770.90270.135*
C200.2716 (5)0.6023 (3)0.6191 (3)0.0588 (10)
H20A0.20350.62800.58920.071*
O30.4681 (4)0.7375 (2)0.9125 (2)0.0803 (9)
C190.4076 (5)0.4828 (3)0.6073 (3)0.0642 (11)
H19A0.43320.42640.56860.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0600 (16)0.0584 (15)0.0478 (14)0.0245 (12)0.0219 (12)0.0173 (12)
N10.068 (2)0.063 (2)0.0528 (19)0.0261 (16)0.0166 (16)0.0331 (17)
C30.0408 (17)0.0425 (18)0.0348 (17)0.0151 (14)0.0048 (13)0.0109 (15)
C60.075 (3)0.046 (2)0.058 (2)0.0281 (19)0.023 (2)0.0205 (19)
C40.065 (2)0.0417 (19)0.0358 (18)0.0204 (17)0.0090 (16)0.0096 (15)
C70.060 (2)0.049 (2)0.050 (2)0.0259 (17)0.0191 (17)0.0118 (17)
C50.076 (3)0.060 (2)0.0344 (18)0.031 (2)0.0144 (18)0.0157 (18)
C20.050 (2)0.047 (2)0.048 (2)0.0174 (16)0.0158 (16)0.0107 (17)
Sb10.03433 (11)0.03025 (11)0.03262 (11)0.01447 (8)0.00818 (8)0.01327 (9)
Cl40.0760 (6)0.0343 (4)0.0502 (5)0.0230 (4)0.0131 (4)0.0206 (4)
Cl30.0535 (5)0.0654 (6)0.0479 (5)0.0294 (4)0.0235 (4)0.0201 (4)
Cl20.0417 (4)0.0604 (5)0.0524 (5)0.0143 (4)−0.0025 (4)0.0199 (4)
C10.156 (5)0.050 (3)0.100 (4)0.001 (3)0.076 (4)0.012 (3)
Cl10.0454 (5)0.0531 (5)0.0556 (5)0.0120 (4)0.0120 (4)0.0201 (4)
Sb20.03311 (11)0.03102 (11)0.03265 (11)0.01310 (8)0.00899 (8)0.01088 (9)
Cl70.0387 (4)0.0537 (5)0.0463 (5)0.0207 (4)0.0039 (3)0.0133 (4)
Cl90.0555 (5)0.0718 (6)0.0403 (4)0.0266 (4)0.0207 (4)0.0195 (4)
Cl80.0743 (6)0.0327 (4)0.0724 (6)0.0173 (4)0.0249 (5)0.0198 (4)
Cl50.0680 (6)0.0411 (5)0.0661 (6)0.0207 (4)0.0095 (5)0.0252 (4)
Cl60.0632 (6)0.0692 (6)0.0527 (5)0.0359 (5)0.0274 (4)0.0295 (5)
C100.0378 (17)0.0436 (18)0.050 (2)0.0115 (14)0.0189 (15)0.0174 (16)
C140.049 (2)0.045 (2)0.054 (2)0.0113 (16)0.0148 (17)0.0098 (17)
N20.0512 (18)0.062 (2)0.074 (2)0.0242 (16)0.0188 (17)0.0363 (19)
C120.060 (2)0.066 (3)0.051 (2)0.021 (2)0.0104 (19)0.024 (2)
C110.058 (2)0.0444 (19)0.048 (2)0.0174 (17)0.0160 (17)0.0134 (17)
C130.062 (2)0.045 (2)0.084 (3)0.0245 (19)0.032 (2)0.025 (2)
O20.086 (2)0.097 (2)0.0539 (18)0.0350 (18)0.0098 (16)0.0284 (18)
C90.049 (2)0.064 (2)0.054 (2)0.0180 (18)0.0191 (18)0.029 (2)
C80.115 (4)0.073 (3)0.086 (3)0.058 (3)0.019 (3)0.029 (3)
C180.052 (2)0.050 (2)0.063 (2)0.0253 (17)0.0139 (18)0.0182 (19)
N30.0535 (19)0.059 (2)0.0435 (17)0.0063 (15)0.0064 (14)0.0091 (15)
C170.0345 (16)0.0369 (17)0.0491 (19)0.0089 (13)0.0141 (14)0.0118 (15)
C160.043 (2)0.062 (2)0.054 (2)0.0087 (18)0.0123 (17)0.011 (2)
C210.057 (2)0.056 (2)0.060 (2)0.0328 (18)0.0253 (19)0.0211 (19)
C150.084 (3)0.105 (4)0.068 (3)0.033 (3)−0.005 (3)0.028 (3)
C200.055 (2)0.072 (3)0.062 (3)0.030 (2)0.0186 (19)0.034 (2)
O30.082 (2)0.0704 (19)0.0608 (18)0.0244 (16)0.0179 (15)−0.0077 (15)
C190.081 (3)0.046 (2)0.057 (2)0.026 (2)0.020 (2)0.0038 (19)

Geometric parameters (Å, °)

O1—C21.215 (4)C14—C131.350 (5)
N1—C61.327 (4)C14—H14A0.9300
N1—C51.329 (5)N2—C121.316 (5)
N1—H1D0.8600N2—C131.325 (5)
C3—C71.374 (4)N2—H2A0.8600
C3—C41.381 (4)C12—C111.367 (5)
C3—C21.502 (5)C12—H12A0.9300
C6—C71.348 (5)C11—H11A0.9300
C6—H6A0.9300C13—H13A0.9300
C4—C51.345 (5)O2—C91.200 (4)
C4—H4A0.9300C9—C81.464 (5)
C7—H7A0.9300C8—H8A0.9600
C5—H5A0.9300C8—H8B0.9600
C2—C11.476 (5)C8—H8C0.9600
C1—H1A0.9600C18—C191.354 (5)
C1—H1B0.9600C18—C171.370 (4)
C1—H1C0.9600C18—H18A0.9300
Sb1—Cl42.4036 (9)N3—C201.320 (5)
Sb1—Cl32.4107 (10)N3—C191.320 (5)
Sb1—Cl22.4113 (14)N3—H3A0.8600
Sb1—Cl12.9359 (12)C17—C211.374 (5)
Sb1—Cl53.0214 (12)C17—C161.514 (5)
Sb1—Cl6i3.1275 (12)C16—O31.194 (4)
Sb2—Cl72.3516 (12)C16—C151.473 (6)
Sb2—Cl82.4459 (10)C21—C201.367 (5)
Sb2—Cl92.4498 (10)C21—H21A0.9300
Sb2—Cl52.8352 (11)C15—H15A0.9600
Sb2—Cl62.8937 (11)C15—H15B0.9600
C10—C141.373 (4)C15—H15C0.9600
C10—C111.378 (5)C20—H20A0.9300
C10—C91.511 (5)C19—H19A0.9300
C6—N1—C5121.5 (3)C12—N2—H2A118.7
C6—N1—H1D119.2C13—N2—H2A118.7
C5—N1—H1D119.2N2—C12—C11119.7 (4)
C7—C3—C4119.3 (3)N2—C12—H12A120.1
C7—C3—C2118.9 (3)C11—C12—H12A120.1
C4—C3—C2121.8 (3)C12—C11—C10119.3 (3)
N1—C6—C7121.0 (3)C12—C11—H11A120.3
N1—C6—H6A119.5C10—C11—H11A120.3
C7—C6—H6A119.5N2—C13—C14119.8 (3)
C5—C4—C3119.5 (3)N2—C13—H13A120.1
C5—C4—H4A120.2C14—C13—H13A120.1
C3—C4—H4A120.2O2—C9—C8122.4 (4)
C6—C7—C3118.6 (3)O2—C9—C10117.8 (4)
C6—C7—H7A120.7C8—C9—C10119.7 (3)
C3—C7—H7A120.7C9—C8—H8A109.5
N1—C5—C4120.0 (3)C9—C8—H8B109.5
N1—C5—H5A120.0H8A—C8—H8B109.5
C4—C5—H5A120.0C9—C8—H8C109.5
O1—C2—C1121.9 (4)H8A—C8—H8C109.5
O1—C2—C3119.5 (3)H8B—C8—H8C109.5
C1—C2—C3118.6 (3)C19—C18—C17119.5 (4)
Cl4—Sb1—Cl392.15 (4)C19—C18—H18A120.2
Cl4—Sb1—Cl289.42 (5)C17—C18—H18A120.2
Cl3—Sb1—Cl290.96 (4)C20—N3—C19122.4 (3)
C2—C1—H1A109.5C20—N3—H3A118.8
C2—C1—H1B109.5C19—N3—H3A118.8
H1A—C1—H1B109.5C18—C17—C21118.4 (3)
C2—C1—H1C109.5C18—C17—C16122.7 (3)
H1A—C1—H1C109.5C21—C17—C16118.8 (3)
H1B—C1—H1C109.5O3—C16—C15122.5 (4)
Cl7—Sb2—Cl890.05 (5)O3—C16—C17118.7 (4)
Cl7—Sb2—Cl987.97 (4)C15—C16—C17118.8 (4)
Cl8—Sb2—Cl990.76 (4)C20—C21—C17120.2 (3)
Cl7—Sb2—Cl586.83 (5)C20—C21—H21A119.9
Cl8—Sb2—Cl5174.29 (3)C17—C21—H21A119.9
Cl9—Sb2—Cl593.90 (4)C16—C15—H15A109.5
Cl7—Sb2—Cl683.07 (4)C16—C15—H15B109.5
Cl8—Sb2—Cl689.72 (4)H15A—C15—H15B109.5
Cl9—Sb2—Cl6171.03 (3)C16—C15—H15C109.5
Cl5—Sb2—Cl685.17 (4)H15A—C15—H15C109.5
C14—C10—C11118.7 (3)H15B—C15—H15C109.5
C14—C10—C9118.9 (3)N3—C20—C21119.0 (4)
C11—C10—C9122.4 (3)N3—C20—H20A120.5
C13—C14—C10119.9 (4)C21—C20—H20A120.5
C13—C14—H14A120.0N3—C19—C18120.4 (3)
C10—C14—H14A120.0N3—C19—H19A119.8
C12—N2—C13122.5 (3)C18—C19—H19A119.8
C5—N1—C6—C71.5 (6)C12—N2—C13—C140.3 (6)
C7—C3—C4—C50.7 (5)C10—C14—C13—N20.9 (6)
C2—C3—C4—C5−176.9 (3)C14—C10—C9—O21.7 (5)
N1—C6—C7—C3−2.4 (6)C11—C10—C9—O2179.5 (3)
C4—C3—C7—C61.3 (5)C14—C10—C9—C8−177.2 (4)
C2—C3—C7—C6179.0 (3)C11—C10—C9—C80.6 (5)
C6—N1—C5—C40.6 (6)C19—C18—C17—C21−1.1 (5)
C3—C4—C5—N1−1.7 (6)C19—C18—C17—C16178.2 (4)
C7—C3—C2—O1−16.1 (5)C18—C17—C16—O3175.1 (4)
C4—C3—C2—O1161.5 (3)C21—C17—C16—O3−5.6 (5)
C7—C3—C2—C1165.5 (4)C18—C17—C16—C15−4.1 (5)
C4—C3—C2—C1−16.9 (5)C21—C17—C16—C15175.1 (4)
C11—C10—C14—C13−1.0 (5)C18—C17—C21—C201.6 (5)
C9—C10—C14—C13176.9 (3)C16—C17—C21—C20−177.7 (3)
C13—N2—C12—C11−1.4 (6)C19—N3—C20—C21−1.3 (6)
N2—C12—C11—C101.2 (6)C17—C21—C20—N3−0.4 (6)
C14—C10—C11—C120.0 (5)C20—N3—C19—C181.9 (6)
C9—C10—C11—C12−177.8 (3)C17—C18—C19—N3−0.6 (6)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl60.862.303.148 (3)170
N1—H1D···Cl1ii0.862.203.056 (3)174
N3—H3A···Cl5iii0.862.353.198 (3)168
C1—H1A···O2iv0.962.603.506 (5)158
C5—H5A···Cl8v0.932.783.585 (4)146
C13—H13A···Cl1i0.932.763.661 (4)162
C19—H19A···Cl7iii0.932.673.449 (4)141
C21—H21A···O1iii0.932.423.349 (4)177

Symmetry codes: (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) x, y−1, z−1; (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5440).

References

  • Fu, X. (2009a). Acta Cryst. E65, o1804. [PMC free article] [PubMed]
  • Fu, X. (2009b). Acta Cryst. E65, o2385. [PMC free article] [PubMed]
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Majerz, I., Malarski, Z. & Sawka-Dobrowolska, W. (1991). J. Mol. Struct.249, 109–116.
  • Pang, L., Whitehead, M. A., Bermardinelli, G. & Lucken, E. A. C. (1994). J. Chem. Crystallogr.24, 203–211.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem.16, 1119–1128.
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography