PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1852.
Published online 2010 June 26. doi:  10.1107/S1600536810024621
PMCID: PMC3007066

2-Hy­droxy-5-nitro-N-phenyl­benzamide

Abstract

The mol­ecule of the title compound, C13H10N2O4, is almost planar with a dihedral angle between the benzene rings of 1.99 (13)°. The nitro group and its parent benzene ring are oriented at a dihedral angle of 7.6 (3)°. Intra­molecular C—H(...)O and N—H(...)O hydrogen bonds form two planar S(6) motifs. Inter­molecular O—H(...)O=C hydrogen bonds join mol­ecules into chains extending along the c axis.

Related literature

For similar structures, see: Raza et al. (2009a [triangle],b [triangle]). For graph-set notation of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1852-scheme1.jpg

Experimental

Crystal data

  • C13H10N2O4
  • M r = 258.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1852-efi1.jpg
  • a = 9.9012 (2) Å
  • b = 4.7821 (1) Å
  • c = 12.3369 (4) Å
  • β = 97.919 (1)°
  • V = 578.56 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.34 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.979, T max = 0.988
  • 4381 measured reflections
  • 1042 independent reflections
  • 966 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.071
  • S = 1.06
  • 1042 reflections
  • 173 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024621/gk2288sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024621/gk2288Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20-819).

supplementary crystallographic information

Comment

The title compound (I), (Fig. 1) has been synthesized as a precursor for benzoxazepines.

Previously, we have reported the crystal structures of N-phenyl-2-hydroxy-3-nitrobenzamide (Raza et al., 2009a). The title compound differs from it due to the attachement of nitro group at position-5 instead of position-3. We, also have reported the crystal structure of 2-hydroxy-5-nitrobenzamide (Raza et al., 2009b) which is related to (I).

In (I), the phenyl rings, A (C1–C6) of 2-hydroxy-5-nitrobenzamide and B (C8–C13) attached with 2-hydroxy-5-nitrobenzamide are planar with r. m. s. deviation of 0.0027 Å and 0.0031 Å, respectively. The O-atom of hydroxy group is at a distance of 0.014 (3) Å from the mean square plane of parent ring A. Nitro group C (O2/N1/O3) is of course planar. The dihedral angle between A/B, A/C and B/C is 1.99 (13)°, 7.63 (33)° and 6.20 (34)°, respectively. There exist a weak intramolecular H-bonding of C—H···O type forming an S(5) and a S(6) ring motif (Bernstein et al., 1995), whereas H-bonding of N—H···O type complete an S(6) ring motif. The intermolecular H-bonding of C—H···O and O—H···O types complete R21(6) ring motif (Table 1, Fig. 2). The molecules are essentially stabilized in the form of one dimensional chains extending along the c-axis. However, weak interactions of C—H···O type form 2-dimensional polymeric sheets (Fig. 2).

Experimental

A solution of N-pheny-2-hydroxybenzamide (5.3 g, 0.025 mol) in ethyl acetate (EtOAc) (25 mL) was added dropwise to a nitrating mixture of HNO3 (2.25 mL, 3.15 g , 0.05 mol) and H2SO4 (1.33 mL, 2.45 g, 0.025 mol) with constant stirring while the temperature was kept below 278 K. The reaction mixture was refluxed for 5 h, cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3 × 25 mL). The organic extract was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford reddish brown solid. The column chromatographic purification with 0, 2.5, and 5 % EtOAc in n-hexane (0.5 L each) over a silica gel packed column (25.5 cm) afforded the title compound I in 5th-34th fraction of 50 mL each upon leaving at room temperature.

Refinement

In the absence of significant anomalous scattering effects, all Friedal pairs were merged. All H atoms were found in difference Fourier maps however for the refinement they were positioned geometrically with O–H = 0.82, N–H= 0.86 and C–H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the c-axis. Hydrogen bonds are shown by dashed lines.

Crystal data

C13H10N2O4F(000) = 268
Mr = 258.23Dx = 1.482 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 931 reflections
a = 9.9012 (2) Åθ = 2.8–26.0°
b = 4.7821 (1) ŵ = 0.11 mm1
c = 12.3369 (4) ÅT = 296 K
β = 97.919 (1)°Needle, colorless
V = 578.56 (3) Å30.34 × 0.12 × 0.10 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer1042 independent reflections
Radiation source: fine-focus sealed tube966 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 3.7°
ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009)k = −5→5
Tmin = 0.979, Tmax = 0.988l = −14→14
4381 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0447P)2 + 0.0284P] where P = (Fo2 + 2Fc2)/3
1042 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = −0.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.87642 (17)0.9971 (4)−0.04316 (13)0.0503 (6)
O21.3304 (2)1.6021 (5)0.27212 (18)0.0782 (8)
O31.2680 (2)1.2889 (5)0.38093 (16)0.0688 (8)
O40.88497 (17)0.7133 (3)0.27868 (13)0.0484 (5)
N11.25998 (19)1.4015 (5)0.29149 (17)0.0502 (7)
N20.78477 (17)0.6615 (4)0.10417 (14)0.0398 (6)
C10.9697 (2)1.0963 (5)0.03785 (17)0.0374 (7)
C21.0633 (2)1.2998 (5)0.01674 (19)0.0452 (8)
C31.1591 (2)1.4007 (5)0.09772 (19)0.0440 (8)
C41.1606 (2)1.2957 (5)0.20283 (19)0.0395 (7)
C51.0696 (2)1.0964 (5)0.22608 (17)0.0382 (7)
C60.9712 (2)0.9923 (4)0.14475 (17)0.0353 (7)
C70.8756 (2)0.7790 (4)0.18042 (17)0.0356 (6)
C80.6844 (2)0.4564 (4)0.11679 (19)0.0378 (7)
C90.6723 (3)0.3201 (5)0.2141 (2)0.0467 (8)
C100.5716 (3)0.1191 (5)0.2159 (2)0.0562 (9)
C110.4843 (3)0.0530 (5)0.1231 (3)0.0565 (9)
C120.4959 (2)0.1904 (5)0.0268 (2)0.0563 (9)
C130.5957 (3)0.3893 (5)0.0230 (2)0.0494 (8)
H10.882281.08314−0.099820.0754*
H21.060611.36856−0.054040.0542*
H2A0.787310.717550.038240.0477*
H31.221491.535930.082840.0528*
H51.073511.029730.297270.0459*
H90.730900.363010.277440.0561*
H100.563220.027350.281110.0674*
H110.41778−0.083470.125370.0677*
H120.435980.14877−0.035970.0675*
H130.603790.47916−0.042610.0592*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0561 (9)0.0674 (11)0.0251 (9)−0.0152 (8)−0.0027 (7)0.0045 (8)
O20.0822 (13)0.0874 (15)0.0612 (13)−0.0397 (13)−0.0041 (10)−0.0068 (11)
O30.0754 (13)0.0863 (14)0.0391 (12)−0.0147 (11)−0.0117 (9)0.0010 (10)
O40.0645 (10)0.0525 (9)0.0267 (9)−0.0075 (8)0.0014 (7)0.0006 (7)
N10.0480 (11)0.0581 (13)0.0424 (13)−0.0011 (10)−0.0009 (9)−0.0086 (10)
N20.0470 (11)0.0462 (11)0.0258 (10)−0.0058 (8)0.0041 (8)0.0007 (8)
C10.0381 (11)0.0458 (12)0.0275 (12)0.0011 (10)0.0016 (8)−0.0024 (9)
C20.0503 (14)0.0554 (14)0.0301 (13)−0.0010 (11)0.0060 (10)0.0036 (10)
C30.0416 (12)0.0488 (14)0.0419 (14)−0.0062 (10)0.0067 (10)−0.0030 (11)
C40.0372 (11)0.0447 (12)0.0356 (13)0.0026 (10)0.0014 (9)−0.0067 (10)
C50.0429 (12)0.0432 (12)0.0279 (12)0.0038 (10)0.0026 (9)−0.0006 (9)
C60.0386 (11)0.0378 (12)0.0288 (12)0.0050 (9)0.0026 (8)−0.0015 (8)
C70.0427 (11)0.0380 (11)0.0258 (11)0.0029 (10)0.0032 (8)−0.0015 (9)
C80.0392 (11)0.0380 (12)0.0364 (12)0.0033 (9)0.0063 (9)−0.0007 (9)
C90.0515 (13)0.0488 (14)0.0396 (14)−0.0017 (11)0.0056 (10)0.0038 (11)
C100.0593 (15)0.0536 (15)0.0581 (18)−0.0024 (12)0.0169 (13)0.0125 (12)
C110.0476 (13)0.0478 (14)0.075 (2)−0.0085 (11)0.0117 (13)0.0008 (13)
C120.0479 (14)0.0542 (15)0.0637 (18)−0.0065 (12)−0.0030 (12)−0.0065 (13)
C130.0534 (14)0.0517 (15)0.0412 (14)−0.0063 (12)0.0002 (11)0.0012 (11)

Geometric parameters (Å, °)

O1—C11.350 (3)C6—C71.498 (3)
O2—N11.229 (3)C8—C131.390 (3)
O3—N11.221 (3)C8—C91.386 (3)
O4—C71.243 (3)C9—C101.387 (4)
O1—H10.8200C10—C111.373 (4)
N1—C41.457 (3)C11—C121.376 (4)
N2—C81.420 (3)C12—C131.377 (3)
N2—C71.333 (3)C2—H20.9300
N2—H2A0.8600C3—H30.9300
C1—C61.408 (3)C5—H50.9300
C1—C21.393 (3)C9—H90.9300
C2—C31.367 (3)C10—H100.9300
C3—C41.389 (3)C11—H110.9300
C4—C51.369 (3)C12—H120.9300
C5—C61.391 (3)C13—H130.9300
O1···N22.675 (2)C8···C11viii3.480 (3)
O1···O4i2.609 (2)C8···C6vii3.583 (3)
O2···C11ii3.335 (4)C8···C1vii3.557 (3)
O3···C3iii3.364 (3)C9···C7vii3.339 (3)
O4···C2iv3.212 (3)C9···O42.853 (3)
O4···C92.853 (3)C9···C6vii3.556 (3)
O4···O1iv2.609 (2)C10···C7vii3.501 (3)
O4···C1iv3.319 (3)C11···C8vii3.480 (3)
O1···H2A1.9500C11···C3xi3.599 (4)
O2···H32.4500C11···O2xii3.335 (4)
O2···H12v2.7300C1···H2A2.5600
O2···H11ii2.5900C7···H92.8100
O3···H52.4000C7···H1iv2.7800
O3···H12vi2.7800H1···H22.2400
O3···H2iii2.8300H1···O4i1.7900
O3···H3iii2.7300H1···C7i2.7800
O4···H52.3900H1···H5i2.4800
O4···H92.2600H2···H12.2400
O4···H1iv1.7900H2···O3x2.8300
O4···H2iv2.5400H2···O4i2.5400
N2···O12.675 (2)H2A···O11.9500
N2···C1vii3.426 (3)H2A···C12.5600
C1···N2viii3.426 (3)H2A···H132.2600
C1···C8viii3.557 (3)H3···O22.4500
C1···O4i3.319 (3)H3···O3x2.7300
C2···O4i3.212 (3)H5···O32.4000
C3···C6viii3.478 (3)H5···O42.3900
C3···C11ix3.599 (4)H5···H1iv2.4800
C3···O3x3.364 (3)H9···O42.2600
C6···C8viii3.583 (3)H9···C72.8100
C6···C3vii3.478 (3)H11···O2xii2.5900
C6···C9viii3.556 (3)H12···O2xiii2.7300
C7···C10viii3.501 (3)H12···O3xiv2.7800
C7···C9viii3.339 (3)H13···H2A2.2600
C1—O1—H1109.00N2—C8—C13116.1 (2)
O2—N1—O3123.5 (2)C9—C8—C13119.5 (2)
O2—N1—C4117.9 (2)C8—C9—C10119.2 (2)
O3—N1—C4118.6 (2)C9—C10—C11121.2 (2)
C7—N2—C8128.92 (18)C10—C11—C12119.5 (2)
C8—N2—H2A116.00C11—C12—C13120.3 (2)
C7—N2—H2A116.00C8—C13—C12120.3 (2)
O1—C1—C2120.8 (2)C1—C2—H2119.00
O1—C1—C6119.16 (19)C3—C2—H2119.00
C2—C1—C6120.04 (19)C2—C3—H3121.00
C1—C2—C3121.5 (2)C4—C3—H3121.00
C2—C3—C4118.2 (2)C4—C5—H5120.00
N1—C4—C3119.6 (2)C6—C5—H5119.00
N1—C4—C5118.7 (2)C8—C9—H9120.00
C3—C4—C5121.7 (2)C10—C9—H9120.00
C4—C5—C6120.9 (2)C9—C10—H10119.00
C5—C6—C7116.10 (18)C11—C10—H10119.00
C1—C6—C7126.17 (19)C10—C11—H11120.00
C1—C6—C5117.73 (19)C12—C11—H11120.00
O4—C7—N2122.28 (19)C11—C12—H12120.00
O4—C7—C6119.55 (18)C13—C12—H12120.00
N2—C7—C6118.16 (18)C8—C13—H13120.00
N2—C8—C9124.4 (2)C12—C13—H13120.00
O3—N1—C4—C3−173.4 (2)N1—C4—C5—C6178.9 (2)
O2—N1—C4—C5−171.8 (2)C3—C4—C5—C6−0.4 (3)
O2—N1—C4—C37.4 (3)C4—C5—C6—C10.8 (3)
O3—N1—C4—C57.4 (3)C4—C5—C6—C7−178.9 (2)
C8—N2—C7—C6179.93 (17)C1—C6—C7—N24.2 (3)
C7—N2—C8—C9−6.5 (3)C5—C6—C7—O42.4 (3)
C8—N2—C7—O41.4 (3)C5—C6—C7—N2−176.16 (19)
C7—N2—C8—C13174.8 (2)C1—C6—C7—O4−177.2 (2)
C6—C1—C2—C30.8 (3)N2—C8—C9—C10−178.7 (2)
O1—C1—C6—C5179.3 (2)C13—C8—C9—C100.0 (4)
O1—C1—C2—C3−179.5 (2)N2—C8—C13—C12179.3 (2)
C2—C1—C6—C5−1.0 (3)C9—C8—C13—C120.5 (4)
C2—C1—C6—C7178.6 (2)C8—C9—C10—C110.1 (4)
O1—C1—C6—C7−1.2 (3)C9—C10—C11—C12−0.7 (4)
C1—C2—C3—C4−0.3 (3)C10—C11—C12—C131.1 (4)
C2—C3—C4—C50.1 (3)C11—C12—C13—C8−1.0 (4)
C2—C3—C4—N1−179.1 (2)

Symmetry codes: (i) x, −y+2, z−1/2; (ii) x+1, y+2, z; (iii) x, −y+3, z+1/2; (iv) x, −y+2, z+1/2; (v) x+1, −y+2, z+1/2; (vi) x+1, −y+1, z+1/2; (vii) x, y−1, z; (viii) x, y+1, z; (ix) x+1, y+1, z; (x) x, −y+3, z−1/2; (xi) x−1, y−1, z; (xii) x−1, y−2, z; (xiii) x−1, −y+2, z−1/2; (xiv) x−1, −y+1, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.792.609 (2)176
N2—H2A···O10.861.952.675 (2)141
C2—H2···O4i0.932.543.212 (3)130
C5—H5···O40.932.392.729 (3)101
C9—H9···O40.932.262.853 (3)121
C11—H11···O2xii0.932.593.335 (4)137

Symmetry codes: (i) x, −y+2, z−1/2; (xii) x−1, y−2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2288).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009a). Acta Cryst. E65, o1042. [PMC free article] [PubMed]
  • Raza, A. R., Tahir, M. N., Nisar, B., Danish, M. & Iqbal, M. S. (2009b). Acta Cryst. E65, o3260. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography