PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1863.
Published online 2010 June 30. doi:  10.1107/S1600536810024347
PMCID: PMC3007065

3,3-Bis[(4-chloro­phen­yl)sulfan­yl]-1-methyl­piperidin-2-one

Abstract

The piperidone ring in the title compound, C18H17Cl2NOS2, has a distorted half-chair conformation. The S-bound benzene rings are approximately perpendicular to and splayed out of the mean plane through the piperidone ring [dihedral angles = 71.86 (13) and 46.94 (11)°]. In the crystal, C—H(...)O inter­actions link the mol­ecules into [010] supra­molecular chains with a helical topology. C—H(...)Cl and C—H(...)π inter­actions are also present.

Related literature

For background to β-thiocarbonyl compounds, see: Vinhato (2007 [triangle]); Olivato et al. (2009 [triangle]). For related structures, see: Zukerman-Schpector et al. (2006 [triangle], 2008 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]). For further synthetic details, see: Hashmat & McDermott (2002 [triangle]); Zoretic & Soja (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1863-scheme1.jpg

Experimental

Crystal data

  • C18H17Cl2NOS2
  • M r = 398.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1863-efi1.jpg
  • a = 8.0313 (2) Å
  • b = 9.7460 (2) Å
  • c = 24.2623 (7) Å
  • β = 94.0767 (12)°
  • V = 1894.28 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 290 K
  • 0.33 × 0.30 × 0.29 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.82, T max = 0.85
  • 12888 measured reflections
  • 3288 independent reflections
  • 2778 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.121
  • S = 1.05
  • 3288 reflections
  • 218 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024347/hb5512sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024347/hb5512Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Brazilian agencies: FAPESP, CNPq (fellowships to JZ-S and PRO) and CAPES (808/2009 to JZ-S) for financial support.

supplementary crystallographic information

Comment

As part of our on-going research on the conformational and electronic interactions in β-thio-carbonyl compounds, e.g. N,N-diethyl-2-[(4'-substituted) phenylthio]acetamides, N-methoxy-N-methyl-2-[(4'-substituted) phenylthio]propanamides, and 1-methyl-3-phenylsulfonyl-2-piperidone, utilizing spectroscopic, theoretical and X-ray diffraction methods (Vinhato, 2007; Olivato et al., 2009; Zukerman-Schpector et al. 2008), the title compound, (I), was synthesized and its crystal structure determined.

In (I), Fig. 1, the piperidone ring has a distorted half-chair conformation: the ring-puckering parameters are q2 = 0.453 (2) Å, q3 = -0.271 (2) Å, QT = 0.528 (3) Å, [var phi]2 = 37.4 (3) ° (Cremer & Pople, 1975). While the S2-bound benzene ring is orientated to be almost perpendicular to the plane through the piperidone ring [dihedral angle = 71.86 (13) °], the S1-bond benzene ring is somewhat splayed with respect to the other rings, forming dihedral angles of 46.94 (11) and 61.68 (13) ° with those through the piperidone and S2-bound benzene rings, respectively.

Supramolecular helical chains aligned along the b axis dominate the crystal packing, Fig. 2 and Table 1, and these are sustained in the crystal structure by C–H···Cl and C–H···π interactions, Table 1.

Experimental

Firstly, 4-chlorothiophenol (5.8 g, 40 mmol) was reacted with bromine (1.1 ml, 40 mmol) in dichloromethane (250 ml) on hydrated silica gel support (25 g of SiO2 and 12 ml of water) to give 4-chlorophenyl disulfide (5.3 g, yield = 93%). A yellow solid was obtained after filtration and evaporation without further purification (Hashmat & McDermott, 2002). 1-Methyl-2-piperidinone (2.0 g, 18 mmol) was added dropwise to a cooled (195 K) solution of hexamethylphosphoramide (HMPA) (3.3 ml, 18 mmol), diisopropylamine (2.6 ml, 18 mmol) and butyllithium (11.5 ml, 18 mmol) in THF (60 ml). After 20 minutes, 4-chlorophenyl disulfide (5.3 g, 18 mmol) dissolved in THF (10 ml) was added dropwise to the enolate solution (Zoretic & Soja, 1976). After stirring for 3 h at 195 K, water (80 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous sodium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 7:3 ratio give the pure product (2.8 g, yield = 35%). Irregular lumps of (I) were obtained by vapour diffusion of n-hexane into a chloroform solution held at 283 K; m.p. 372–373 K. IR (cm-1): ν(C=O) 1663. NMR (CDCl3, p.p.m.): δ 1.93–1.95 (2H, m), 1.97–1.99 (2H, m), 2.91 (3H, s), 3.21 (2H, triplet, J = 6.0 Hz), 7.31–7.33 (4H, m, Aryl-H), 7.55–7.57 (4H, m, Aryl-H). Analysis found: C 54.33, H 4.30, N 3.39%. C18H17OCl2NS2 requires: C 54.27, H 4.30, N 3.52%.

Refinement

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).
Fig. 2.
Supramolecular chain in (I) mediated by C–H···O interactions (orange dashed lines). The chain with helical topology is aligned along the b axis.

Crystal data

C18H17Cl2NOS2F(000) = 824
Mr = 398.37Dx = 1.397 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10679 reflections
a = 8.0313 (2) Åθ = 2.9–27.5°
b = 9.7460 (2) ŵ = 0.57 mm1
c = 24.2623 (7) ÅT = 290 K
β = 94.0767 (12)°Irregular, colourless
V = 1894.28 (8) Å30.33 × 0.30 × 0.29 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3288 independent reflections
Radiation source: sealed tube2778 reflections with I > 2σ(I)
graphiteRint = 0.049
CCD rotation images scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.82, Tmax = 0.85k = −11→11
12888 measured reflectionsl = −28→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0558P)2 + 0.758P] where P = (Fo2 + 2Fc2)/3
3288 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.3322 (3)0.3195 (2)0.66893 (9)0.0514 (5)
C30.4451 (2)0.2265 (2)0.70636 (9)0.0490 (5)
C40.3506 (3)0.1218 (2)0.73838 (9)0.0527 (5)
H4A0.31890.04480.71450.063*
H4B0.42230.08760.76920.063*
C50.1959 (3)0.1856 (3)0.75971 (10)0.0629 (6)
H5A0.14070.11990.78230.075*
H5B0.22640.26500.78230.075*
C60.0808 (3)0.2277 (3)0.71127 (11)0.0697 (7)
H6A0.03090.14640.69400.084*
H6B−0.00850.28350.72430.084*
C70.6208 (2)0.2649 (2)0.81264 (9)0.0520 (5)
C80.7382 (3)0.1601 (2)0.81591 (10)0.0557 (5)
H80.78410.12960.78400.067*
C90.7876 (3)0.1008 (2)0.86615 (11)0.0632 (6)
H90.86590.03030.86810.076*
C100.7204 (3)0.1464 (3)0.91293 (11)0.0678 (7)
C110.6026 (3)0.2500 (3)0.91080 (11)0.0756 (7)
H110.55720.28000.94290.091*
C120.5534 (3)0.3082 (3)0.86065 (10)0.0673 (7)
H120.47370.37760.85890.081*
C130.4783 (3)0.0506 (2)0.61552 (9)0.0572 (5)
C140.4608 (3)−0.0901 (3)0.61981 (11)0.0687 (6)
H140.5093−0.13600.65050.082*
C150.3712 (4)−0.1629 (3)0.57846 (13)0.0814 (8)
H150.3600−0.25760.58110.098*
C160.2998 (3)−0.0938 (4)0.53379 (12)0.0798 (8)
C170.3157 (4)0.0450 (4)0.52858 (12)0.0869 (9)
H170.26600.09000.49790.104*
C180.4061 (4)0.1180 (3)0.56924 (11)0.0744 (7)
H180.41880.21230.56570.089*
C190.0614 (4)0.3812 (3)0.62912 (13)0.0835 (8)
H19A0.07250.47780.63620.125*
H19B−0.05300.35450.63140.125*
H19C0.09540.36120.59280.125*
O10.3934 (2)0.40242 (17)0.63843 (7)0.0719 (5)
Cl10.78388 (14)0.07472 (10)0.97627 (4)0.1129 (3)
Cl20.19021 (13)−0.18374 (14)0.48074 (4)0.1289 (4)
S10.56494 (8)0.35278 (6)0.75025 (3)0.0615 (2)
S20.60276 (7)0.14457 (7)0.66590 (3)0.0638 (2)
N10.1666 (2)0.3052 (2)0.67012 (8)0.0589 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0504 (12)0.0463 (11)0.0566 (12)−0.0034 (9)−0.0033 (9)−0.0035 (9)
C30.0412 (11)0.0466 (11)0.0588 (12)−0.0035 (8)−0.0002 (9)−0.0038 (9)
C40.0553 (12)0.0434 (11)0.0585 (13)−0.0066 (9)−0.0020 (10)−0.0008 (9)
C50.0609 (14)0.0606 (13)0.0688 (15)−0.0116 (11)0.0150 (11)−0.0024 (11)
C60.0474 (13)0.0693 (15)0.0928 (19)−0.0050 (11)0.0079 (12)−0.0031 (13)
C70.0425 (11)0.0500 (11)0.0621 (12)−0.0023 (9)−0.0056 (9)−0.0108 (10)
C80.0446 (11)0.0576 (12)0.0646 (14)0.0018 (9)0.0013 (10)−0.0100 (10)
C90.0493 (12)0.0538 (13)0.0846 (17)0.0044 (10)−0.0083 (11)−0.0089 (12)
C100.0654 (15)0.0707 (15)0.0645 (15)−0.0047 (12)−0.0161 (12)−0.0043 (12)
C110.0682 (16)0.0962 (19)0.0615 (15)0.0109 (14)−0.0027 (12)−0.0207 (14)
C120.0574 (14)0.0725 (15)0.0699 (16)0.0178 (12)−0.0097 (11)−0.0204 (12)
C130.0451 (11)0.0698 (14)0.0566 (13)0.0102 (10)0.0043 (9)−0.0087 (10)
C140.0633 (15)0.0689 (16)0.0735 (16)0.0100 (12)0.0019 (12)−0.0054 (12)
C150.0790 (19)0.0766 (17)0.090 (2)−0.0058 (14)0.0131 (15)−0.0209 (15)
C160.0612 (16)0.109 (2)0.0690 (17)−0.0075 (15)0.0079 (13)−0.0283 (16)
C170.086 (2)0.112 (2)0.0606 (16)0.0151 (17)−0.0100 (14)−0.0096 (16)
C180.0828 (18)0.0781 (17)0.0609 (15)0.0126 (14)−0.0043 (13)−0.0028 (12)
C190.0666 (17)0.0893 (19)0.0905 (19)0.0192 (14)−0.0237 (14)−0.0028 (15)
O10.0693 (11)0.0663 (10)0.0790 (11)−0.0096 (8)−0.0020 (9)0.0199 (9)
Cl10.1408 (8)0.1145 (7)0.0781 (5)0.0100 (6)−0.0305 (5)0.0123 (5)
Cl20.1044 (7)0.1885 (11)0.0944 (6)−0.0460 (7)0.0104 (5)−0.0639 (7)
S10.0640 (4)0.0479 (3)0.0702 (4)−0.0118 (2)−0.0113 (3)−0.0013 (2)
S20.0407 (3)0.0814 (4)0.0688 (4)0.0036 (3)−0.0002 (3)−0.0123 (3)
N10.0470 (10)0.0599 (11)0.0686 (12)0.0035 (8)−0.0055 (8)−0.0025 (9)

Geometric parameters (Å, °)

C2—O11.222 (3)C10—C111.382 (4)
C2—N11.340 (3)C10—Cl11.731 (3)
C2—C31.533 (3)C11—C121.375 (4)
C3—C41.518 (3)C11—H110.9300
C3—S21.839 (2)C12—H120.9300
C3—S11.851 (2)C13—C141.383 (4)
C4—C51.513 (3)C13—C181.391 (3)
C4—H4A0.9700C13—S21.777 (2)
C4—H4B0.9700C14—C151.388 (4)
C5—C61.500 (3)C14—H140.9300
C5—H5A0.9700C15—C161.367 (4)
C5—H5B0.9700C15—H150.9300
C6—N11.463 (3)C16—C171.366 (4)
C6—H6A0.9700C16—Cl21.743 (3)
C6—H6B0.9700C17—C181.380 (4)
C7—C121.385 (3)C17—H170.9300
C7—C81.388 (3)C18—H180.9300
C7—S11.769 (2)C19—N11.460 (3)
C8—C91.381 (3)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C101.365 (4)C19—H19C0.9600
C9—H90.9300
O1—C2—N1121.6 (2)C9—C10—Cl1119.9 (2)
O1—C2—C3120.21 (19)C11—C10—Cl1119.0 (2)
N1—C2—C3118.18 (19)C12—C11—C10119.2 (2)
C4—C3—C2113.84 (17)C12—C11—H11120.4
C4—C3—S2111.66 (14)C10—C11—H11120.4
C2—C3—S2109.95 (14)C11—C12—C7120.9 (2)
C4—C3—S1114.26 (15)C11—C12—H12119.5
C2—C3—S1102.08 (13)C7—C12—H12119.5
S2—C3—S1104.26 (10)C14—C13—C18119.3 (2)
C5—C4—C3110.55 (17)C14—C13—S2120.93 (19)
C5—C4—H4A109.5C18—C13—S2119.6 (2)
C3—C4—H4A109.5C13—C14—C15120.2 (3)
C5—C4—H4B109.5C13—C14—H14119.9
C3—C4—H4B109.5C15—C14—H14119.9
H4A—C4—H4B108.1C16—C15—C14119.2 (3)
C6—C5—C4108.67 (19)C16—C15—H15120.4
C6—C5—H5A110.0C14—C15—H15120.4
C4—C5—H5A110.0C17—C16—C15121.6 (3)
C6—C5—H5B110.0C17—C16—Cl2118.4 (3)
C4—C5—H5B110.0C15—C16—Cl2119.9 (3)
H5A—C5—H5B108.3C16—C17—C18119.5 (3)
N1—C6—C5112.44 (19)C16—C17—H17120.2
N1—C6—H6A109.1C18—C17—H17120.2
C5—C6—H6A109.1C17—C18—C13120.1 (3)
N1—C6—H6B109.1C17—C18—H18119.9
C5—C6—H6B109.1C13—C18—H18119.9
H6A—C6—H6B107.8N1—C19—H19A109.5
C12—C7—C8118.7 (2)N1—C19—H19B109.5
C12—C7—S1118.79 (17)H19A—C19—H19B109.5
C8—C7—S1122.34 (17)N1—C19—H19C109.5
C9—C8—C7120.6 (2)H19A—C19—H19C109.5
C9—C8—H8119.7H19B—C19—H19C109.5
C7—C8—H8119.7C7—S1—C3105.06 (10)
C10—C9—C8119.5 (2)C13—S2—C3102.48 (9)
C10—C9—H9120.3C2—N1—C19117.4 (2)
C8—C9—H9120.3C2—N1—C6125.80 (19)
C9—C10—C11121.1 (2)C19—N1—C6116.7 (2)
O1—C2—C3—C4−175.5 (2)C14—C15—C16—C170.6 (4)
N1—C2—C3—C43.4 (3)C14—C15—C16—Cl2178.7 (2)
O1—C2—C3—S2−49.4 (2)C15—C16—C17—C180.0 (5)
N1—C2—C3—S2129.55 (18)Cl2—C16—C17—C18−178.1 (2)
O1—C2—C3—S160.9 (2)C16—C17—C18—C13−0.9 (4)
N1—C2—C3—S1−120.22 (18)C14—C13—C18—C171.1 (4)
C2—C3—C4—C5−40.9 (2)S2—C13—C18—C17177.0 (2)
S2—C3—C4—C5−166.11 (15)C12—C7—S1—C3−113.91 (19)
S1—C3—C4—C575.9 (2)C8—C7—S1—C370.55 (19)
C3—C4—C5—C663.6 (2)C4—C3—S1—C729.71 (18)
C4—C5—C6—N1−48.4 (3)C2—C3—S1—C7153.07 (14)
C12—C7—C8—C9−0.4 (3)S2—C3—S1—C7−92.45 (12)
S1—C7—C8—C9175.18 (17)C14—C13—S2—C3−104.0 (2)
C7—C8—C9—C10−0.3 (3)C18—C13—S2—C380.2 (2)
C8—C9—C10—C110.6 (4)C4—C3—S2—C1367.21 (17)
C8—C9—C10—Cl1−178.95 (18)C2—C3—S2—C13−60.15 (16)
C9—C10—C11—C12−0.3 (4)S1—C3—S2—C13−168.93 (11)
Cl1—C10—C11—C12179.3 (2)O1—C2—N1—C196.9 (3)
C10—C11—C12—C7−0.3 (4)C3—C2—N1—C19−172.0 (2)
C8—C7—C12—C110.7 (4)O1—C2—N1—C6−168.6 (2)
S1—C7—C12—C11−175.0 (2)C3—C2—N1—C612.5 (3)
C18—C13—C14—C15−0.4 (4)C5—C6—N1—C211.0 (3)
S2—C13—C14—C15−176.2 (2)C5—C6—N1—C19−164.5 (2)
C13—C14—C15—C16−0.5 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12.
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.323.218 (3)164
C11—H11···Cl2ii0.932.833.708 (3)157
C19—H19a···Cg1iii0.962.953.676 (3)133

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5512).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hashmat, A. M. & McDermott, M. (2002). Tetrahedron Lett.43, 6271–6273.
  • Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  • Olivato, P. R., Domingues, N. L. C., Mondino, M. G., Tormena, C. F., Rittner, R. & Dal Colle, M. (2009). J. Mol. Struct.920, 393–400.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vinhato, E. (2007). PhD Thesis, University of São Paulo, Brazil.
  • Zoretic, P. A. & Soja, P. (1976). J. Org. Chem.41, 3587–3589.
  • Zukerman-Schpector, J., Maganhi, S., Olivato, P. R., Vinhato, E. & Cerqueira, C. R. (2006). Z. Kristallogr. New Cryst. Struct.221, 165–166.
  • Zukerman-Schpector, J., Olivato, P. R., Cerqueira, C. R. Jr, Vinhato, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o835–o836. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography