PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1687.
Published online 2010 June 18. doi:  10.1107/S1600536810022609
PMCID: PMC3007063

N-Cyclo­hexyl­benzamide

Abstract

The structure of the title compound, C13H17NO, features an anti disposition of the N—H and carbonyl groups. The amide group is twisted with respect to the benzene ring [N–C(=O)–C–C torsion angle = −30.8 (4)°]. In the crystal, C(4) chains propagating in [100] are formed by inter­molecular N–H(...)O hydrogen bonds. Weak C—H(...)π inter­actions link the chains into sheets.

Related literature

For biological applications of benzamides, see: Clark et al. (1988 [triangle]); Leander et al. (1988 [triangle]); Diouf et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1687-scheme1.jpg

Experimental

Crystal data

  • C13H17NO
  • M r = 203.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1687-efi1.jpg
  • a = 5.2372 (3) Å
  • b = 6.5841 (4) Å
  • c = 16.6029 (12) Å
  • β = 91.176 (2)°
  • V = 572.38 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.28 × 0.17 × 0.12 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • 5479 measured reflections
  • 1423 independent reflections
  • 1105 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.163
  • S = 1.07
  • 1423 reflections
  • 140 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022609/hb5496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022609/hb5496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are thankful to Mr Munawar Hussain, Engineering Cell Government College University, Lahore, for providing supportive services to the Materials Chemistry Laboratory.

supplementary crystallographic information

Comment

Benzamides are frequently used in the synthesis of new and potent anti-convulsant agents (Clark et al., 1988; Leander et al., 1988; Diouf et al., 1997). The structure of the title compound, (I), a benzamide derivative, is reported herein (Fig. 1).

The benzene ring, adjacent to the carbonyl group, twisted with respect to the plane formed through the central amide group; the N1–C1–C2–C3 torsion angle = -30.8 (4) °. In the same way, the putative mirror plane through the cyclohexyl ring (having a chair conformation) is twisted away from the central plane; the O1–N1–C8–C11 torsion angle is 151.3 (4) °. The anti-disposition of the NH and carbonyl groups allows for the formation of N–H···O hydrogen bonds which leads to the formation supramolecular chains aligned along the a axis, Fig. 2 and Table 1. These are connected into layers in the ab plane via C–H···π interactions, Fig. 2 and Table 1.

Experimental

A solution of cyclohexyl amine (0.458 µl, 4 mmol) in dichloromethane (15 ml) was treated dropwise with benzoyl chloride (0.463 µl, 4 mmol) in the presence of triethanol amine (5 ml) as a catalyst. The resulting mixture was stirred for 1 h. The precipitates that formed were filtered, dried and crystallized from methanol to yield colourless blocks of (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined freely. In the absence of significant anomalous scattering effects, 1130 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
Fig. 2.
A view in projection down the b axis of the unit-cell contents for (I), highlighting the formation of layers in the ab plane. The N–H···O and C–H···π interactions are shown as orange ...

Crystal data

C13H17NOZ = 2
Mr = 203.28F(000) = 220
Monoclinic, P21Dx = 1.179 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.2372 (3) ŵ = 0.07 mm1
b = 6.5841 (4) ÅT = 293 K
c = 16.6029 (12) ÅBlock, colourless
β = 91.176 (2)°0.28 × 0.17 × 0.12 mm
V = 572.38 (6) Å3

Data collection

Bruker APEXII CCD diffractometer1105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
graphiteθmax = 27.5°, θmin = 1.2°
[var phi] and ω scansh = −6→6
5479 measured reflectionsk = −8→8
1423 independent reflectionsl = −21→21

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.1083P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1423 reflectionsΔρmax = 0.22 e Å3
140 parametersΔρmin = −0.21 e Å3
1 restraintAbsolute structure: unk
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7158 (3)0.9885 (4)0.23591 (14)0.0636 (8)
N10.2952 (5)0.9238 (4)0.24441 (15)0.0424 (6)
H1n0.157 (6)0.969 (6)0.2345 (18)0.045 (9)*
C10.4923 (5)1.0267 (4)0.21584 (18)0.0415 (7)
C20.4362 (5)1.1979 (5)0.15919 (15)0.0381 (6)
C30.2245 (5)1.2004 (6)0.10682 (16)0.0460 (7)
H30.10771.09410.10710.055*
C40.1894 (6)1.3614 (7)0.05468 (18)0.0575 (9)
H40.04881.36200.01950.069*
C50.3571 (6)1.5201 (6)0.05375 (19)0.0602 (10)
H50.33211.62700.01790.072*
C60.5654 (6)1.5203 (6)0.1069 (2)0.0586 (9)
H60.67851.62920.10760.070*
C70.6038 (6)1.3593 (6)0.15818 (19)0.0495 (8)
H70.74551.35910.19290.059*
C80.3233 (5)0.7589 (4)0.30240 (17)0.0405 (7)
H80.49040.69580.29450.049*
C90.3184 (8)0.8399 (6)0.3885 (2)0.0611 (9)
H9A0.45700.93580.39680.073*
H9B0.15880.91080.39690.073*
C100.3452 (8)0.6680 (7)0.4484 (2)0.0683 (11)
H10A0.51400.60880.44430.082*
H10B0.32960.72180.50240.082*
C110.1481 (6)0.5051 (6)0.4349 (2)0.0636 (10)
H11A−0.01980.55930.44610.076*
H11B0.18140.39370.47190.076*
C120.1507 (7)0.4266 (6)0.3493 (2)0.0620 (9)
H12A0.01200.33060.34130.074*
H12B0.31000.35560.34050.074*
C130.1224 (6)0.5985 (5)0.2888 (2)0.0482 (8)
H13A0.13620.54440.23470.058*
H13B−0.04550.65910.29340.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0330 (10)0.0681 (17)0.0893 (17)0.0023 (11)−0.0042 (10)0.0243 (15)
N10.0333 (12)0.0437 (14)0.0500 (14)0.0042 (11)−0.0005 (9)0.0077 (11)
C10.0359 (13)0.0405 (16)0.0479 (15)0.0036 (13)0.0009 (11)−0.0004 (13)
C20.0356 (12)0.0421 (15)0.0368 (14)0.0029 (12)0.0050 (10)−0.0031 (13)
C30.0398 (14)0.0546 (18)0.0436 (15)0.0001 (14)−0.0021 (11)0.0020 (16)
C40.0471 (16)0.080 (2)0.0453 (16)0.0045 (18)−0.0018 (13)0.0133 (19)
C50.0554 (17)0.067 (2)0.059 (2)0.0138 (18)0.0137 (15)0.024 (2)
C60.0552 (17)0.0512 (19)0.070 (2)−0.0060 (17)0.0147 (15)0.0140 (18)
C70.0426 (14)0.0538 (19)0.0523 (17)−0.0035 (14)0.0059 (12)0.0047 (16)
C80.0354 (12)0.0391 (15)0.0470 (16)0.0060 (12)0.0010 (11)0.0046 (13)
C90.084 (2)0.051 (2)0.0476 (17)−0.0102 (19)−0.0115 (16)−0.0008 (16)
C100.082 (2)0.071 (3)0.0513 (19)−0.001 (2)−0.0104 (17)0.010 (2)
C110.0624 (19)0.062 (2)0.067 (2)0.010 (2)0.0116 (16)0.022 (2)
C120.0633 (19)0.0396 (18)0.083 (3)−0.0053 (16)0.0001 (17)0.0068 (18)
C130.0457 (15)0.0427 (17)0.0560 (19)−0.0010 (14)−0.0021 (13)−0.0011 (15)

Geometric parameters (Å, °)

O1—C11.236 (3)C8—C91.526 (4)
N1—C11.331 (4)C8—H80.9800
N1—C81.456 (4)C9—C101.511 (5)
N1—H1n0.80 (3)C9—H9A0.9700
C1—C21.493 (4)C9—H9B0.9700
C2—C71.379 (4)C10—C111.502 (5)
C2—C31.395 (4)C10—H10A0.9700
C3—C41.379 (5)C10—H10B0.9700
C3—H30.9300C11—C121.512 (5)
C4—C51.365 (5)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.389 (5)C12—C131.519 (5)
C5—H50.9300C12—H12A0.9700
C6—C71.372 (5)C12—H12B0.9700
C6—H60.9300C13—H13A0.9700
C7—H70.9300C13—H13B0.9700
C8—C131.505 (4)
C1—N1—C8123.1 (2)C10—C9—C8110.6 (3)
C1—N1—H1N116 (3)C10—C9—H9A109.5
C8—N1—H1N120 (2)C8—C9—H9A109.5
O1—C1—N1122.5 (3)C10—C9—H9B109.5
O1—C1—C2119.8 (2)C8—C9—H9B109.5
N1—C1—C2117.7 (2)H9A—C9—H9B108.1
C7—C2—C3118.8 (3)C11—C10—C9112.5 (3)
C7—C2—C1118.2 (2)C11—C10—H10A109.1
C3—C2—C1123.0 (3)C9—C10—H10A109.1
C4—C3—C2119.7 (3)C11—C10—H10B109.1
C4—C3—H3120.2C9—C10—H10B109.1
C2—C3—H3120.2H10A—C10—H10B107.8
C5—C4—C3121.2 (3)C10—C11—C12111.4 (3)
C5—C4—H4119.4C10—C11—H11A109.4
C3—C4—H4119.4C12—C11—H11A109.4
C4—C5—C6119.4 (3)C10—C11—H11B109.4
C4—C5—H5120.3C12—C11—H11B109.4
C6—C5—H5120.3H11A—C11—H11B108.0
C7—C6—C5119.8 (3)C11—C12—C13111.4 (3)
C7—C6—H6120.1C11—C12—H12A109.4
C5—C6—H6120.1C13—C12—H12A109.4
C6—C7—C2121.2 (3)C11—C12—H12B109.4
C6—C7—H7119.4C13—C12—H12B109.4
C2—C7—H7119.4H12A—C12—H12B108.0
N1—C8—C13111.3 (2)C8—C13—C12111.4 (2)
N1—C8—C9110.8 (3)C8—C13—H13A109.3
C13—C8—C9111.1 (3)C12—C13—H13A109.3
N1—C8—H8107.8C8—C13—H13B109.3
C13—C8—H8107.8C12—C13—H13B109.3
C9—C8—H8107.8H13A—C13—H13B108.0
C8—N1—C1—O10.7 (5)C3—C2—C7—C6−0.1 (4)
C8—N1—C1—C2−177.6 (2)C1—C2—C7—C6179.2 (3)
O1—C1—C2—C7−28.3 (4)C1—N1—C8—C13−146.5 (3)
N1—C1—C2—C7150.1 (3)C1—N1—C8—C989.3 (3)
O1—C1—C2—C3150.9 (3)N1—C8—C9—C10179.5 (3)
N1—C1—C2—C3−30.8 (4)C13—C8—C9—C1055.2 (3)
C7—C2—C3—C41.0 (4)C8—C9—C10—C11−54.8 (4)
C1—C2—C3—C4−178.2 (3)C9—C10—C11—C1254.6 (4)
C2—C3—C4—C5−0.6 (5)C10—C11—C12—C13−54.1 (4)
C3—C4—C5—C6−0.7 (5)N1—C8—C13—C12−179.8 (3)
C4—C5—C6—C71.6 (5)C9—C8—C13—C12−55.8 (3)
C5—C6—C7—C2−1.2 (5)C11—C12—C13—C855.2 (4)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.80 (3)2.32 (3)3.065 (3)157 (3)
C13—H13a···Cg1ii0.972.823.722 (4)154
C5—H5···Cg1iii0.932.963.729 (4)141

Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5496).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). APEX2 & SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, C. R. (1988). Epilepsia, 29, 198–203. [PubMed]
  • Diouf, O., Bourhim, M., Lambert, D. M., Poupaert, J. H., Stables, J. P. & Vamecq, J. (1997). Biomed. Pharmacother.51, 131–136. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Leander, J. D., Robertson, D. W., Clark, C. R., Lawson, R. R. & Rathbun, R. C. (1988). Epilepsia, 29, 83–90. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography