PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m813.
Published online 2010 June 18. doi:  10.1107/S1600536810022889
PMCID: PMC3007062

[(1S,2S)-2-(1-{[2-(2-Oxidobenzyl­idene­amino)­cyclo­hex­yl]imino}­eth­yl)phenolato-κ4 O,N,N′,O′]copper(II)

Abstract

In the title compound, [Cu(C21H22N2O2)], the cyclo­hexyl ring adopts a chair conformation with the two imine groups linked at equatorial positions. The CuII ion is coordinated by two N atoms and two O atoms from the bis-Schiff base ligand in a slightly distorted square-planar geometry. The dihedral angle between the two benzene rings is 45.89 (9)°. The crystal structure is devoid of any classical hydrogen bonds. However, inter­molecular C—H(...)O inter­actions are present and stabilize the structure.

Related literature

For the crystal structures of a similar symmetrical compound see: Yao et al. (1997 [triangle]). For metal complexes of unsymmetrical bis-Schiff bases, see: Lashanizadegan & Boghaei (2002 [triangle]); Rabie et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m813-scheme1.jpg

Experimental

Crystal data

  • [Cu(C21H22N2O2)]
  • M r = 397.95
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m813-efi1.jpg
  • a = 9.6699 (3) Å
  • b = 7.7324 (2) Å
  • c = 12.1847 (4) Å
  • β = 111.649 (2)°
  • V = 846.80 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 100 K
  • 0.20 × 0.10 × 0.03 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.780, T max = 0.962
  • 9232 measured reflections
  • 4573 independent reflections
  • 3542 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.091
  • S = 0.97
  • 4573 reflections
  • 236 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2036 Friedel pairs
  • Flack parameter: 0.050 (15)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022889/pv2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022889/pv2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

supplementary crystallographic information

Comment

The structure of the title complex is shown in Fig. 1. The crystal structures of a similar symmetrical compound (Yao et al., 1997) as well as metal complexes of unsymmetrical bis-schiff bases (Lashanizadegan et al., 2002; Rabie et al., 2008) have been reported.

There are no classical hydrogen bonds observed in this structure. However, there are two C—H···O type inter-molecular interactions, C9–H9..O1 and C10–H10B..O2, observed (Tab. 1) which stabilize the crystal structure.

Experimental

To an ethanolic solution (10 ml) of 1,2-diaminohexane (0.224 g, 2 mmol) was added a solution of 2-hydroxyacetophenone (0.28 g, 2 mmol) in the same solvent (10 ml). The mixture was stirred at room temperature for 15 minutes, followed by addition of 2-hydroxybenzaldehyde (0.252 g, 2 mmol) in ethanol (10 ml). The resulting yellow solution was stirred for 3 h. Then a solution of copper (II) acetate monohydrate (0.4 g, 2 mmol) in a minimum amount of ethanol was added and the solution was set aside for one day whereupon the green crystals of the title compound were obtained.

Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95–1.00 Å), and were treated as riding on their parent atoms with Uiso(H) set to 1.2–1.5Ueq(C). An absolute structure was determined using the Flack (1983) method.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound at the 50% probability level.

Crystal data

[Cu(C21H22N2O2)]F(000) = 414
Mr = 397.95Dx = 1.561 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1422 reflections
a = 9.6699 (3) Åθ = 3.2–23.5°
b = 7.7324 (2) ŵ = 1.31 mm1
c = 12.1847 (4) ÅT = 100 K
β = 111.649 (2)°Block, green
V = 846.80 (4) Å30.20 × 0.10 × 0.03 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer4573 independent reflections
Radiation source: fine-focus sealed tube3542 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.780, Tmax = 0.962k = −10→10
9232 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.091w = 1/[σ2(Fo2) + (0.0281P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
4573 reflectionsΔρmax = 0.39 e Å3
236 parametersΔρmin = −0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 2036 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.050 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.09681 (4)0.25280 (6)0.05446 (3)0.01389 (10)
O10.1603 (3)0.2029 (3)−0.0696 (2)0.0199 (7)
O20.2941 (3)0.3130 (3)0.1540 (2)0.0179 (6)
N1−0.1155 (3)0.2570 (8)−0.0484 (2)0.0158 (5)
N20.0262 (3)0.2546 (7)0.1826 (2)0.0148 (5)
C10.0826 (4)0.2231 (4)−0.1822 (3)0.0146 (8)
C20.1533 (4)0.1917 (5)−0.2626 (4)0.0210 (9)
H20.25280.1501−0.23300.025*
C30.0850 (4)0.2184 (5)−0.3815 (3)0.0239 (10)
H30.13550.1914−0.43310.029*
C4−0.0588 (4)0.2855 (5)−0.4267 (3)0.0250 (11)
H4−0.10560.3099−0.50850.030*
C5−0.1319 (4)0.3158 (5)−0.3509 (3)0.0206 (8)
H5−0.23060.3595−0.38250.025*
C6−0.0671 (4)0.2850 (4)−0.2290 (3)0.0142 (9)
C7−0.1594 (4)0.3112 (4)−0.1567 (3)0.0143 (7)
C8−0.3037 (4)0.4067 (5)−0.2152 (4)0.0250 (10)
H8A−0.37880.3272−0.26640.038*
H8B−0.28860.5021−0.26250.038*
H8C−0.33780.4531−0.15460.038*
C9−0.2129 (3)0.2699 (6)0.0225 (3)0.0135 (7)
H9−0.22980.39430.03630.016*
C10−0.3627 (4)0.1763 (5)−0.0305 (3)0.0185 (8)
H10A−0.42220.2286−0.10780.022*
H10B−0.34570.0531−0.04380.022*
C11−0.4481 (4)0.1894 (5)0.0520 (3)0.0198 (8)
H11A−0.46790.31250.06310.024*
H11B−0.54500.12960.01620.024*
C12−0.3605 (4)0.1086 (5)0.1712 (4)0.0223 (9)
H12A−0.3504−0.01720.16110.027*
H12B−0.41560.12500.22470.027*
C13−0.2067 (4)0.1891 (5)0.2264 (3)0.0189 (8)
H13A−0.14870.12610.29980.023*
H13B−0.21630.31100.24740.023*
C14−0.1252 (4)0.1816 (5)0.1409 (3)0.0164 (8)
H14−0.11620.05660.12340.020*
C150.0955 (4)0.3110 (4)0.2870 (3)0.0174 (8)
H150.04410.30940.34010.021*
C160.2456 (4)0.3770 (4)0.3309 (3)0.0155 (8)
C170.3008 (4)0.4505 (5)0.4447 (3)0.0206 (9)
H170.24030.44920.49080.025*
C180.4390 (4)0.5235 (5)0.4905 (4)0.0221 (9)
H180.47360.57390.56700.026*
C190.5288 (4)0.5227 (5)0.4230 (4)0.0222 (9)
H190.62500.57340.45390.027*
C200.4793 (4)0.4495 (5)0.3123 (3)0.0187 (8)
H200.54370.44740.26940.022*
C210.3353 (4)0.3770 (5)0.2605 (3)0.0174 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01095 (17)0.01506 (18)0.0154 (2)0.0002 (3)0.00449 (14)0.0004 (3)
O10.0160 (13)0.0234 (17)0.0211 (15)0.0011 (10)0.0077 (12)−0.0015 (10)
O20.0134 (12)0.0244 (14)0.0159 (14)−0.0023 (11)0.0054 (11)−0.0004 (10)
N10.0127 (13)0.0195 (13)0.0160 (13)0.000 (2)0.0061 (11)−0.002 (2)
N20.0099 (12)0.0176 (12)0.0156 (13)0.002 (2)0.0033 (10)0.000 (2)
C10.0217 (17)0.004 (2)0.0186 (18)−0.0023 (14)0.0084 (15)−0.0016 (13)
C20.0205 (19)0.0154 (18)0.030 (2)0.0004 (15)0.0132 (18)−0.0034 (16)
C30.033 (2)0.020 (3)0.025 (2)−0.0004 (17)0.0173 (18)−0.0067 (16)
C40.033 (2)0.024 (3)0.0184 (19)−0.0016 (18)0.0100 (17)−0.0004 (16)
C50.0200 (19)0.0220 (18)0.019 (2)−0.0013 (16)0.0060 (16)0.0010 (15)
C60.0173 (17)0.007 (2)0.0190 (18)−0.0004 (14)0.0078 (14)−0.0013 (13)
C70.0124 (17)0.0111 (16)0.0185 (19)−0.0032 (13)0.0045 (15)−0.0039 (14)
C80.019 (2)0.028 (2)0.024 (2)−0.0011 (18)0.0031 (18)−0.0012 (17)
C90.0119 (14)0.0145 (19)0.0157 (16)0.0038 (18)0.0071 (12)0.0025 (18)
C100.0129 (18)0.0211 (19)0.021 (2)−0.0027 (16)0.0060 (16)−0.0062 (16)
C110.0145 (18)0.0249 (19)0.021 (2)−0.0025 (15)0.0072 (17)−0.0032 (15)
C120.017 (2)0.021 (2)0.032 (3)−0.0038 (17)0.0125 (19)0.0007 (17)
C130.0188 (19)0.0209 (18)0.019 (2)0.0016 (15)0.0094 (16)0.0028 (15)
C140.0138 (18)0.0137 (17)0.022 (2)0.0013 (15)0.0071 (16)0.0000 (15)
C150.0136 (18)0.0157 (18)0.023 (2)0.0034 (14)0.0070 (16)0.0025 (15)
C160.0151 (19)0.0120 (17)0.016 (2)−0.0011 (15)0.0023 (15)0.0047 (14)
C170.019 (2)0.0207 (19)0.018 (2)0.0039 (16)0.0023 (17)0.0016 (16)
C180.021 (2)0.021 (2)0.019 (2)−0.0014 (17)0.0010 (17)−0.0038 (17)
C190.013 (2)0.017 (2)0.028 (2)−0.0020 (16)−0.0015 (17)0.0030 (17)
C200.0131 (19)0.0179 (19)0.024 (2)0.0001 (15)0.0049 (17)0.0045 (16)
C210.0160 (19)0.0141 (18)0.020 (2)−0.0014 (15)0.0049 (16)0.0050 (15)

Geometric parameters (Å, °)

Cu1—O11.870 (2)C9—H91.0000
Cu1—O21.903 (2)C10—C111.522 (5)
Cu1—N21.921 (2)C10—H10A0.9900
Cu1—N11.972 (3)C10—H10B0.9900
O1—C11.307 (4)C11—C121.519 (5)
O2—C211.306 (4)C11—H11A0.9900
N1—C71.298 (5)C11—H11B0.9900
N1—C91.498 (4)C12—C131.521 (5)
N2—C151.277 (4)C12—H12A0.9900
N2—C141.474 (4)C12—H12B0.9900
C1—C21.407 (5)C13—C141.522 (5)
C1—C61.429 (5)C13—H13A0.9900
C2—C31.368 (5)C13—H13B0.9900
C2—H20.9500C14—H141.0000
C3—C41.394 (5)C15—C161.443 (5)
C3—H30.9500C15—H150.9500
C4—C51.374 (5)C16—C171.409 (5)
C4—H40.9500C16—C211.427 (5)
C5—C61.403 (5)C17—C181.366 (5)
C5—H50.9500C17—H170.9500
C6—C71.481 (5)C18—C191.400 (6)
C7—C81.506 (5)C18—H180.9500
C8—H8A0.9800C19—C201.376 (5)
C8—H8B0.9800C19—H190.9500
C8—H8C0.9800C20—C211.415 (5)
C9—C101.533 (5)C20—H200.9500
C9—C141.538 (5)
O1—Cu1—O290.86 (11)C9—C10—H10A109.6
O1—Cu1—N2168.46 (17)C11—C10—H10B109.6
O2—Cu1—N293.06 (11)C9—C10—H10B109.6
O1—Cu1—N193.73 (11)H10A—C10—H10B108.1
O2—Cu1—N1164.81 (18)C12—C11—C10111.0 (3)
N2—Cu1—N185.27 (10)C12—C11—H11A109.4
C1—O1—Cu1126.2 (2)C10—C11—H11A109.4
C21—O2—Cu1126.4 (2)C12—C11—H11B109.4
C7—N1—C9121.7 (3)C10—C11—H11B109.4
C7—N1—Cu1121.6 (2)H11A—C11—H11B108.0
C9—N1—Cu1111.31 (19)C11—C12—C13111.4 (3)
C15—N2—C14124.3 (3)C11—C12—H12A109.4
C15—N2—Cu1126.9 (3)C13—C12—H12A109.4
C14—N2—Cu1108.9 (2)C11—C12—H12B109.4
O1—C1—C2118.1 (3)C13—C12—H12B109.4
O1—C1—C6124.3 (3)H12A—C12—H12B108.0
C2—C1—C6117.4 (3)C12—C13—C14110.5 (3)
C3—C2—C1122.9 (4)C12—C13—H13A109.6
C3—C2—H2118.6C14—C13—H13A109.6
C1—C2—H2118.6C12—C13—H13B109.6
C2—C3—C4119.7 (3)C14—C13—H13B109.6
C2—C3—H3120.1H13A—C13—H13B108.1
C4—C3—H3120.1N2—C14—C13116.7 (3)
C5—C4—C3118.9 (4)N2—C14—C9106.7 (3)
C5—C4—H4120.5C13—C14—C9112.3 (3)
C3—C4—H4120.5N2—C14—H14106.9
C4—C5—C6122.9 (4)C13—C14—H14106.9
C4—C5—H5118.5C9—C14—H14106.9
C6—C5—H5118.5N2—C15—C16125.2 (3)
C5—C6—C1118.0 (3)N2—C15—H15117.4
C5—C6—C7118.4 (3)C16—C15—H15117.4
C1—C6—C7123.5 (3)C17—C16—C21119.9 (3)
N1—C7—C6121.2 (3)C17—C16—C15118.1 (4)
N1—C7—C8122.5 (3)C21—C16—C15122.0 (3)
C6—C7—C8116.3 (3)C18—C17—C16121.9 (4)
C7—C8—H8A109.5C18—C17—H17119.1
C7—C8—H8B109.5C16—C17—H17119.1
H8A—C8—H8B109.5C17—C18—C19118.9 (4)
C7—C8—H8C109.5C17—C18—H18120.6
H8A—C8—H8C109.5C19—C18—H18120.6
H8B—C8—H8C109.5C20—C19—C18120.7 (4)
N1—C9—C10115.0 (3)C20—C19—H19119.6
N1—C9—C14105.4 (3)C18—C19—H19119.6
C10—C9—C14107.1 (3)C19—C20—C21122.0 (4)
N1—C9—H9109.7C19—C20—H20119.0
C10—C9—H9109.7C21—C20—H20119.0
C14—C9—H9109.7O2—C21—C20118.9 (4)
C11—C10—C9110.4 (3)O2—C21—C16124.5 (3)
C11—C10—H10A109.6C20—C21—C16116.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i1.002.473.403 (6)155
C10—H10B···O2ii0.992.453.366 (4)154

Symmetry codes: (i) −x, y+1/2, −z; (ii) −x, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2290).

References

  • Barbour, L. J. (2001). J. Supramol. Chem 1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lashanizadegan, M. & Boghaei, D. M. (2002). Synth. React. Inorg. Met. Org. Chem.32, 345–355.
  • Rabie, U. M., Assran, A. S. A. & Abou-El-Wafa, M. H. M. (2008). J. Mol. Struct.872, 113–122.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Yao, H. H., Huang, W. T., Lo, J. M., Liao, F. L. & Wang, S. L. (1997). Eur. J. Solid State Inorg. Chem.34, 355–366.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography