PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1759.
Published online 2010 June 23. doi:  10.1107/S1600536810023408
PMCID: PMC3007057

N-Cyclo­hexyl­nicotinamide

Abstract

In the title compound, C12H16N2O, the dihedral angle between the pyridine ring and C/O/N plane is 22.93 (7)°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules, forming extended chains along [001]. π–π inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.825 (2)Å] are also observed.

Related literature

For background information on metal-organic framework compounds, see: Subramanian & Zaworotko (1994 [triangle]); Kitagawa et al. (2004 [triangle]); Rosi et al. (2005 [triangle]). For details of the synthesis, see: Basolo et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1759-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O
  • M r = 204.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1759-efi1.jpg
  • a = 17.596 (2) Å
  • b = 6.4050 (8) Å
  • c = 10.1167 (12) Å
  • β = 103.921 (2)°
  • V = 1106.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.32 × 0.30 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.869, T max = 1.000
  • 5389 measured reflections
  • 1956 independent reflections
  • 1661 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.096
  • S = 1.06
  • 1956 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.10 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023408/pk2247sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023408/pk2247Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Metal-organic frameworks (MOFs) have attracted much attention because of their intriguing topologies (Subramanian & Zaworotko,1994; Kitagawa et al., 2004; Rosi et al., 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound was generated accidentally and its crystal structure is described in this paper. A dedicated synthesis of the compound was previously described by Basolo et al., (2009). The molecular structure of compound is shown in Fig. 1. The dihedral angle between the mean plane of the pyridine ring and the plane formed by atoms C/O/N is 22.93 (7)°. In the crystal structure N—H···O hydrogen bonds involving the acyl O atoms and the adjacent N—H group, form one-dimensional chains along [001] (Fig. 2). There are also π-π interactions involving inversion related pyridine rings.

Experimental

All the starting materials and solvents for syntheses were obtained commercially and used as received. Zn(OAc)2.4H2O (21.8 mg, 0.1 mmol) and N-cyclohexylnicotinamide (20.4 mg, 0.1 mmol) were mixed in a CH3CN/H2O (20 ml, 1:1 v/v) solution with vigorous stirring for ca 30 min. The resulting solution was filtered and left to stand at room temperature. Pale-yellow prismatic crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent over a period of 1 week.

Refinement

Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H distances in the range 0.93–0.97Å and N—H distances of 0.86 Å, and included in the final refinement in the riding model approximation,with Uiso(H) = 1.2Ueq(C,N) for cyclohexyl and nicotinamide H atoms.

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability ellipsoids.
Fig. 2.
The one-dimensional chain structure of the title compound, showing N—H···O hydrogen bonds as red dashed lines.

Crystal data

C12H16N2OF(000) = 440
Mr = 204.27Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2901 reflections
a = 17.596 (2) Åθ = 2.8–29.5°
b = 6.4050 (8) ŵ = 0.08 mm1
c = 10.1167 (12) ÅT = 296 K
β = 103.921 (2)°Block, pale yellow
V = 1106.7 (2) Å30.32 × 0.30 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer1956 independent reflections
Radiation source: fine-focus sealed tube1661 reflections with I > 2σ(I)
graphiteRint = 0.013
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −20→20
Tmin = 0.869, Tmax = 1.000k = −7→7
5389 measured reflectionsl = −7→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1872P] where P = (Fo2 + 2Fc2)/3
1956 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.26804 (6)0.73912 (16)0.77836 (8)0.0572 (3)
N10.43960 (7)1.0508 (2)1.16302 (11)0.0604 (3)
N20.25623 (6)0.64514 (17)0.98679 (9)0.0421 (3)
H20.27060.66881.07290.051*
C10.36028 (8)1.0899 (2)0.89337 (13)0.0535 (4)
H10.33461.10240.80190.064*
C20.41240 (9)1.2403 (2)0.95508 (15)0.0620 (4)
H2A0.42221.35640.90650.074*
C30.44952 (8)1.2162 (2)1.08908 (15)0.0597 (4)
H30.48351.32081.13100.072*
C40.38905 (8)0.9069 (2)1.10174 (13)0.0500 (3)
H40.38190.78991.15180.060*
C50.34619 (7)0.9201 (2)0.96774 (11)0.0401 (3)
C60.28717 (7)0.7604 (2)0.90309 (11)0.0408 (3)
C70.19904 (7)0.48073 (19)0.93833 (11)0.0402 (3)
H70.21260.41310.86020.048*
C80.20335 (8)0.3175 (2)1.04845 (13)0.0479 (3)
H8A0.19290.38271.12880.057*
H8B0.25570.25901.07320.057*
C90.14451 (9)0.1438 (2)1.00039 (15)0.0572 (4)
H9A0.15840.06870.92630.069*
H9B0.14640.04621.07440.069*
C100.06238 (9)0.2285 (2)0.95261 (14)0.0556 (4)
H10A0.02690.11510.91660.067*
H10B0.04600.28841.02940.067*
C110.05771 (8)0.3929 (2)0.84404 (13)0.0543 (4)
H11A0.00530.45110.82030.065*
H11B0.06770.32880.76300.065*
C120.11653 (7)0.5674 (2)0.89148 (13)0.0482 (3)
H12A0.11440.66500.81740.058*
H12B0.10300.64230.96590.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0711 (6)0.0719 (7)0.0293 (5)−0.0167 (5)0.0134 (4)−0.0038 (4)
N10.0581 (7)0.0738 (8)0.0439 (6)−0.0118 (6)0.0014 (5)−0.0022 (6)
N20.0492 (6)0.0490 (6)0.0286 (5)−0.0060 (5)0.0102 (4)−0.0030 (4)
C10.0543 (8)0.0661 (9)0.0378 (7)−0.0094 (7)0.0069 (6)0.0063 (6)
C20.0659 (9)0.0628 (9)0.0563 (9)−0.0178 (7)0.0128 (7)0.0086 (7)
C30.0556 (8)0.0653 (9)0.0554 (8)−0.0164 (7)0.0079 (7)−0.0062 (7)
C40.0512 (7)0.0587 (8)0.0381 (7)−0.0055 (6)0.0068 (5)0.0033 (6)
C50.0386 (6)0.0502 (7)0.0332 (6)0.0011 (5)0.0120 (5)−0.0004 (5)
C60.0429 (7)0.0490 (7)0.0316 (6)0.0017 (5)0.0110 (5)−0.0005 (5)
C70.0487 (7)0.0405 (6)0.0323 (6)−0.0020 (5)0.0111 (5)−0.0045 (5)
C80.0562 (8)0.0439 (7)0.0421 (7)0.0049 (6)0.0090 (6)0.0033 (6)
C90.0818 (10)0.0390 (7)0.0517 (8)−0.0031 (7)0.0176 (7)0.0036 (6)
C100.0653 (9)0.0554 (8)0.0466 (8)−0.0180 (7)0.0144 (6)−0.0041 (6)
C110.0544 (8)0.0589 (9)0.0455 (7)−0.0084 (6)0.0039 (6)−0.0002 (6)
C120.0524 (7)0.0430 (7)0.0459 (7)−0.0009 (6)0.0054 (6)0.0047 (6)

Geometric parameters (Å, °)

O1—C61.2328 (14)C7—C121.5196 (17)
N1—C41.3262 (17)C7—H70.9800
N1—C31.3326 (19)C8—C91.5176 (19)
N2—C61.3341 (15)C8—H8A0.9700
N2—C71.4576 (15)C8—H8B0.9700
N2—H20.8600C9—C101.510 (2)
C1—C21.373 (2)C9—H9A0.9700
C1—C51.3783 (18)C9—H9B0.9700
C1—H10.9300C10—C111.5096 (19)
C2—C31.365 (2)C10—H10A0.9700
C2—H2A0.9300C10—H10B0.9700
C3—H30.9300C11—C121.5203 (18)
C4—C51.3863 (17)C11—H11A0.9700
C4—H40.9300C11—H11B0.9700
C5—C61.4919 (17)C12—H12A0.9700
C7—C81.5164 (17)C12—H12B0.9700
C4—N1—C3116.98 (11)C7—C8—H8A109.4
C6—N2—C7122.71 (9)C9—C8—H8A109.4
C6—N2—H2118.6C7—C8—H8B109.4
C7—N2—H2118.6C9—C8—H8B109.4
C2—C1—C5119.59 (12)H8A—C8—H8B108.0
C2—C1—H1120.2C10—C9—C8111.48 (11)
C5—C1—H1120.2C10—C9—H9A109.3
C3—C2—C1118.70 (14)C8—C9—H9A109.3
C3—C2—H2A120.6C10—C9—H9B109.3
C1—C2—H2A120.6C8—C9—H9B109.3
N1—C3—C2123.48 (13)H9A—C9—H9B108.0
N1—C3—H3118.3C11—C10—C9111.33 (12)
C2—C3—H3118.3C11—C10—H10A109.4
N1—C4—C5124.11 (13)C9—C10—H10A109.4
N1—C4—H4117.9C11—C10—H10B109.4
C5—C4—H4117.9C9—C10—H10B109.4
C1—C5—C4117.05 (12)H10A—C10—H10B108.0
C1—C5—C6119.96 (11)C10—C11—C12111.68 (10)
C4—C5—C6122.99 (11)C10—C11—H11A109.3
O1—C6—N2122.41 (11)C12—C11—H11A109.3
O1—C6—C5120.95 (11)C10—C11—H11B109.3
N2—C6—C5116.64 (10)C12—C11—H11B109.3
N2—C7—C8110.04 (9)H11A—C11—H11B107.9
N2—C7—C12111.81 (10)C7—C12—C11110.90 (11)
C8—C7—C12110.86 (10)C7—C12—H12A109.5
N2—C7—H7108.0C11—C12—H12A109.5
C8—C7—H7108.0C7—C12—H12B109.5
C12—C7—H7108.0C11—C12—H12B109.5
C7—C8—C9111.12 (10)H12A—C12—H12B108.0
C5—C1—C2—C30.5 (2)C1—C5—C6—N2−157.12 (12)
C4—N1—C3—C2−1.9 (2)C4—C5—C6—N223.14 (18)
C1—C2—C3—N12.0 (3)C6—N2—C7—C8153.38 (11)
C3—N1—C4—C5−0.6 (2)C6—N2—C7—C12−82.96 (14)
C2—C1—C5—C4−2.8 (2)N2—C7—C8—C9−179.80 (10)
C2—C1—C5—C6177.44 (12)C12—C7—C8—C955.99 (14)
N1—C4—C5—C13.0 (2)C7—C8—C9—C10−55.68 (15)
N1—C4—C5—C6−177.30 (12)C8—C9—C10—C1154.95 (15)
C7—N2—C6—O11.82 (19)C9—C10—C11—C12−54.88 (16)
C7—N2—C6—C5−178.83 (10)N2—C7—C12—C11−178.89 (10)
C1—C5—C6—O122.24 (18)C8—C7—C12—C11−55.69 (14)
C4—C5—C6—O1−157.50 (13)C10—C11—C12—C755.31 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.172.9998 (13)162

Symmetry codes: (i) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2247).

References

  • Basolo, L., Beccalli, E. M., Borsini, E. & Broggini, G. (2009). Tetrahedron, 65, 3486–3490.
  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc.127, 1504–1518. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev.137, 357–401.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography