PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1878–o1879.
Published online 2010 June 30. doi:  10.1107/S160053681002489X
PMCID: PMC3007052

3β-Hy­droxy­lup-20(29)-en-28-yl 1H-imidazole-1-carboxyl­ate

Abstract

The title triterpene, C34H52N2O3, is a C-28 carbamate derivative of betulin prepared in a one-step reaction from the commercially available 1,1′-carbonyl­diimidazole (CDI). All rings are fused trans. The X-ray study shows the retention of the configuration of C-28 with respect to the known chiral centres of the molecule. In the crystal, the mol­ecules are O—H(...)O hydrogen bonded via the hy­droxy group and the carbonyl group of the carbamate function into chains running along the c axis. A quantum-mechanical ab initio Roothaan Hartree–Fock calculation of the equilibrium geometry of the isolated mol­ecule gives values for bond-lengths and valency angles close to the experimental values. The calculations also reproduce the mol­ecular conformation well, with calculated puckering parameters that agree well with the observed values.

Related literature

For the synthesis of the title compound, see: Santos et al. (2009 [triangle]). For the biological activity of betulin and betulinic acid, see: Dzubak et al. (2006 [triangle]); Tolstikova et al. (2006 [triangle]); Petronelli et al. (2009 [triangle]). For plant triterpenes as potential anti-cancer drugs, see: Kinghorn et al. (2004 [triangle]); Setzer & Setzer (2003 [triangle]). For products afforded by the reaction of CDI with alcohols and phenols, see: Tang et al. (2004 [triangle]); Totleben et al. (1997 [triangle]); Herbez & Fischer (2005 [triangle]); Moreira et al. (2008 [triangle]); Ramos Silva et al. (2007 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Duax & Norton (1975 [triangle]). The quantum chemical calculations were performed with the computer program GAMESS (Schmidt et al., 1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1878-scheme1.jpg

Experimental

Crystal data

  • C34H52N2O3
  • M r = 536.78
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1878-efi1.jpg
  • a = 8.2575 (2) Å
  • b = 12.3909 (4) Å
  • c = 29.0992 (8) Å
  • V = 2977.37 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.22 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.898, T max = 1.0
  • 54547 measured reflections
  • 3117 independent reflections
  • 2106 reflections with I > 2σ(I)
  • R int = 0.111

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.119
  • S = 1.02
  • 3117 reflections
  • 360 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002489X/ez2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002489X/ez2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Fundação para a Ciência e Tecnologia. RCS thanks the FCT for a grant (SFRH/BD/23700/2005). We gratefully acknowledge the LCA-UC for granting computer time in the Milipeia cluster and Mr Carlos Pereira for help in the analysis of the output of the GAMESS code.

supplementary crystallographic information

Comment

Cancer is the second most important disease leading to death in both the developing and developed countries nowadays. Numerous experimental and epidemiological studies have shown that several plant derived natural products may serve as effective anticancer drugs, among which are plant triterpenes (Kinghorn et al., 2004 and Setzer et al., 2003). Betulin and betulinic acid, two pentacyclic lupane triterpenes were reported to display several biological effects including anti-inflammatory, antiviral, antimalarial and in particular anticancer (Dzubak et al., 2006 and Tolstikova et al., 2006). The therapeutic characteristics of betulinic acid regarding specificity and mode of action make it a promising anticancer agent presently under evaluation in phase I studies (Petronelli et al., 2009).

As part of our current interest in the synthesis of new triterpenoid derivatives with cytotoxic activity, we have recently reported the synthesis and evaluation of novel carbamates and N-acylheterocyclic derivatives of betulin and betulinic acid for potential use as chemotherapeutic agents (Santos et al., 2009).

The general procedure for the synthesis of the novel lupane derivatives involved dissolution of the corresponding lupanes and CDI, in THF at reflux, under N2. The reaction of CDI with alcohols and phenols has been reported to afford either N-alkylimidazoles (Tang et al., 2004 and Totleben et al., 1997) or imidazole carboxylic esters (carbamates) (Herbez et al., 2005; Moreira et al., 2008; Ramos Silva et al., 2007; Tang et al., 2004 and Totleben et al., 1997) depending both on alcohol type and on the reaction conditions used. In this case the reaction afforded the carbamate derivative 3β-hydroxy-lup-20 (29)-en-28-yl-1H-imidazole-1-carboxylate in good yield. This compound had been found to induce a selective dose-dependent decrease in the viability of HepG2, HeLa and Jurkat cells after 72 h of treatment according to the determined IC50 values (4.2 µ M, 7.6 µ M and 16.3µ M, respectively), which were 2–8 times lower than that obtained with betulinic acid.

Mindful of the biological and synthetic importance of such molecules, we report in this communication the molecular structure of the 3β-hydroxy-lup-20 (29)-en-28-yl-1H-imidazole-1-carboxylate determined by single-crystal X-ray diffraction, and compare it with that of the free molecule as given by a quantum mechanical ab initio calculation. The structure of this compound with the corresponding atomic numbering scheme is shown in Fig. 1. This triterpenoid compound is a lupane-type with an imidazole carbonyloxy at C-28. The retention of configuration of C-28 was unequivocally demonstrated by this X-ray crystallographic study.

Bond lengths and valency angles have typical values for this type of compounds. All rings are fused trans as shown by the angle between the least-squares planes of the rings [rings A and B: 14.63 (18)°, B and C: 10.63 (18)°, C and D: 6.67 (18)°, D and E: 4.6 (2)°]. Rings A and C have conformations close to chair while rings B and D have conformations slightly distorted from chair towards half-chair as shown by the Cremer & Pople (1975) parameters [ring A: Q = 0.545 (4) Å, θ = 5.4 (4)° and [var phi] = 36 (5)°; B: Q = 0.571 (4) Å, θ = 11.3 (4)° and [var phi] = 1.0 (19)°; C: Q = 0.601 (4) Å, θ = 5.7 (4)° and [var phi] = 338 (3)°; D: Q = 0.569 (4) Å, θ = 171.1 (4)° and [var phi] = 90 (2)°]. Ring E has a twisted conformation along the C17–C18 bond [q2 = 0.443 (4) Å and [var phi]2 = 9.0 (5)° and asymmetry parameters (Duax & Norton, 1975) ΔC2(C21) = ΔC2(C17,18) = 11.7 (4)°].

The molecules are hydrogen bonded involving the hydroxyl group at C3 and the carbonyl group of the carbamate moiety, forming infinite chains running along the c axis. In addition, two short distances between C16—H16A and C28—H28B and the O28A and O28B atoms, respectively may be due to weak intramolecular C—H···O interactions.

In order to gain some insight on how the crystal packing of (I) might affect the molecular geometry we have performed a quantum chemical calculation on the equilibrium geometry of the free molecule. These calculations were performed with the computer program GAMESS (Schmidt et al., 1993).

The ab initio calculations reproduce the observed experimental bond lengths and valency angles of the molecule well, with the exception of the bond C20—C30 for which the calculations gave a distance of 1.5103 Å instead of the observed value of 1.433 (6) Å. Also, the calculated conformations of the rings are very close to the experimental values, with the exception of ring E for which the calculations gave a conformation closer to envelope on C17, instead of the observed twisted conformation around C17–C18.

Experimental

All reagents were obtained from Sigma-Aldrich Co. THF was dried and purified before use according to standard procedures. A solution of betulin (200 mg, 0.45 mmol) and CDI (219 mg, 1.35 mmol) was refluxed in anyhdrous THF (8 ml). After 7 h the reaction was complete (TLC control). Water (30 ml) was added to the mixture and the resulting precipitate was dissolved in ethyl ether (50 ml). The aqueous phase was extracted twice with diethyl ether (2 x 30 ml). The organic phase was then washed with water (30 ml), brine (30 ml), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure to give a yellowish solid. This solid was submitted to f.c.c. with petroleum ether 40–60°C/ethyl acetate (3:2) and afforded the title compound (246 mg, 82%). Full analytical details for this compound (MS, IR, 1H and 13C NMR spectroscopy data) can be found in Santos et al., 2009. Recrystallization from acetone at room temperature gave colourless single crystals suitable for X-ray diffraction.

Ab initio calculations were based on a molecular orbital Roothaan Hartree-Fock method using an extended 6–31 G(d,p) basis set. Tight conditions for convergence of both the self-consistent field cycles and maximum density and energy gradient variations were imposed (10-6 atomic units). The program was run on the Milipeia cluster of UC-LCA (using 16 Opteron cores at 2.2 GHz, runing Linux).

Refinement

All H atoms attached to C atoms were refined as riding on their parent atoms using SHELXL97 defaults. The H atom of the hydroxyl group was refined using an HFIX 147 instruction with Uiso= 1.5 Ueq of the O atom. The absolute configuration was not determined from the X-ray data, as the molecule lacks any strong anomalous scatterers at the Mo Kα wavelength, but was known from the synthetic route. Friedel pairs were merged for the refinement.

Figures

Fig. 1.
ORTEPII plot of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% level.
Fig. 2.
Packing diagram (view along the a axis) showing the hydrogen bonding network.
Fig. 3.
The formation of the title compound.

Crystal data

C34H52N2O3Dx = 1.197 Mg m3
Mr = 536.78Melting point: 476 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3394 reflections
a = 8.2575 (2) Åθ = 2.6–19.6°
b = 12.3909 (4) ŵ = 0.08 mm1
c = 29.0992 (8) ÅT = 293 K
V = 2977.37 (15) Å3Block, colourless
Z = 40.25 × 0.22 × 0.18 mm
F(000) = 1176

Data collection

Bruker APEXII CCD area-detector diffractometer3117 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
graphiteRint = 0.111
[var phi] and ω scansθmax = 25.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −9→9
Tmin = 0.898, Tmax = 1.0k = −14→14
54547 measured reflectionsl = −35→35

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0588P)2 + 0.259P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3117 reflectionsΔρmax = 0.17 e Å3
360 parametersΔρmin = −0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O3A1.2324 (3)0.9802 (3)−0.21004 (8)0.0692 (9)
H3A1.18560.9476−0.23070.104*
O28A0.3667 (3)1.0883 (2)0.12637 (8)0.0487 (7)
O28B0.3861 (3)1.1078 (3)0.20317 (9)0.0608 (8)
N28A0.1558 (3)1.1559 (2)0.16449 (11)0.0456 (8)
N28B−0.0758 (4)1.2165 (3)0.13709 (15)0.0720 (11)
C11.1881 (4)0.9825 (3)−0.08289 (11)0.0431 (10)
H1A1.26191.0103−0.05980.052*
H1B1.17840.9052−0.07820.052*
C21.2598 (4)1.0030 (4)−0.13052 (11)0.0472 (10)
H2A1.27661.0799−0.13460.057*
H2B1.36430.9676−0.13280.057*
C31.1511 (4)0.9619 (3)−0.16763 (11)0.0447 (9)
H31.14100.8837−0.16360.054*
C40.9786 (4)1.0102 (3)−0.16640 (12)0.0403 (9)
C50.9112 (4)0.9973 (3)−0.11667 (11)0.0351 (8)
H50.90230.9191−0.11240.042*
C60.7385 (4)1.0385 (3)−0.11032 (11)0.0449 (10)
H6A0.73961.1166−0.10810.054*
H6B0.67391.0187−0.13690.054*
C70.6626 (4)0.9911 (3)−0.06708 (11)0.0452 (10)
H7A0.65110.9138−0.07110.054*
H7B0.55491.0211−0.06340.054*
C80.7600 (4)1.0123 (3)−0.02291 (11)0.0354 (8)
C90.9435 (4)0.9876 (3)−0.03140 (11)0.0342 (8)
H90.94790.9092−0.03580.041*
C101.0205 (4)1.0351 (3)−0.07616 (11)0.0350 (8)
C111.0414 (4)1.0077 (3)0.01245 (11)0.0421 (9)
H11A1.15370.98900.00690.051*
H11B1.03691.08390.02000.051*
C120.9792 (4)0.9427 (3)0.05311 (11)0.0390 (9)
H12A1.03940.96280.08040.047*
H12B0.99800.86660.04740.047*
C130.7987 (4)0.9610 (3)0.06169 (10)0.0334 (8)
H130.78581.03830.06780.040*
C140.6979 (4)0.9367 (3)0.01754 (11)0.0346 (8)
C150.5141 (4)0.9542 (3)0.02663 (12)0.0455 (10)
H15A0.49331.03110.02800.055*
H15B0.45390.92550.00070.055*
C160.4497 (4)0.9020 (3)0.07071 (12)0.0470 (10)
H16A0.33800.92370.07540.056*
H16B0.45200.82410.06740.056*
C170.5496 (4)0.9344 (3)0.11233 (12)0.0376 (9)
C180.7289 (4)0.9020 (3)0.10367 (11)0.0365 (9)
H180.72820.82500.09590.044*
C190.8096 (4)0.9114 (3)0.15107 (11)0.0403 (9)
H190.83790.98740.15600.048*
C200.9578 (5)0.8441 (3)0.16120 (13)0.0477 (10)
C210.6699 (5)0.8817 (4)0.18491 (13)0.0552 (11)
H21A0.69390.81440.20050.066*
H21B0.65710.93790.20790.066*
C220.5159 (4)0.8707 (3)0.15669 (13)0.0466 (10)
H22A0.42400.90080.17300.056*
H22B0.49380.79550.14990.056*
C230.9800 (6)1.1274 (3)−0.18353 (14)0.0609 (12)
H23A1.01881.1295−0.21460.091*
H23B1.04991.1699−0.16430.091*
H23C0.87221.1563−0.18240.091*
C240.8719 (5)0.9437 (4)−0.19920 (12)0.0549 (11)
H24A0.76640.9760−0.20120.082*
H24B0.86200.8714−0.18770.082*
H24C0.92060.9422−0.22910.082*
C251.0456 (5)1.1586 (3)−0.07340 (13)0.0534 (11)
H25A1.07811.1780−0.04280.080*
H25B0.94611.1946−0.08090.080*
H25C1.12821.1799−0.09480.080*
C260.7317 (5)1.1319 (3)−0.01023 (12)0.0494 (10)
H26A0.76051.1768−0.03580.074*
H26B0.79741.15050.01580.074*
H26C0.61961.1427−0.00280.074*
C270.7156 (5)0.8154 (3)0.00488 (12)0.0455 (10)
H27A0.65820.77230.02690.068*
H27B0.82810.79590.00510.068*
H27C0.67150.8031−0.02520.068*
C280.5360 (4)1.0553 (3)0.12224 (13)0.0461 (10)
H28A0.59271.07190.15060.055*
H28B0.58701.09560.09760.055*
C28A0.3144 (4)1.1153 (3)0.16739 (14)0.0452 (9)
C28B0.0639 (5)1.1753 (3)0.12673 (15)0.0536 (11)
H28C0.09741.16080.09680.064*
C28C−0.0750 (6)1.2231 (4)0.18384 (19)0.0810 (16)
H28D−0.16151.24870.20120.097*
C28D0.0650 (5)1.1884 (4)0.20191 (16)0.0702 (14)
H28E0.09451.18670.23270.084*
C290.9945 (6)0.7521 (4)0.13855 (17)0.0801 (15)
H29A1.08190.71030.14800.096*
H29B0.93240.73060.11350.096*
C301.0532 (6)0.8776 (4)0.19981 (16)0.0818 (16)
H30A1.14560.83110.20280.123*
H30B0.98900.87350.22730.123*
H30C1.08890.95060.19530.123*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O3A0.0532 (18)0.118 (3)0.0366 (15)−0.0123 (18)0.0124 (13)−0.0020 (16)
O28A0.0432 (15)0.0619 (18)0.0411 (15)0.0164 (13)0.0093 (12)−0.0033 (14)
O28B0.0542 (17)0.083 (2)0.0449 (17)0.0161 (16)−0.0023 (14)0.0079 (16)
N28A0.0382 (16)0.0482 (19)0.0505 (19)0.0132 (15)0.0066 (16)0.0009 (17)
N28B0.054 (2)0.071 (3)0.091 (3)0.020 (2)−0.016 (2)−0.009 (2)
C10.0292 (18)0.063 (3)0.038 (2)−0.0043 (19)−0.0011 (15)0.0032 (19)
C20.034 (2)0.070 (3)0.038 (2)−0.005 (2)0.0047 (16)0.001 (2)
C30.041 (2)0.060 (3)0.034 (2)−0.0035 (18)0.0061 (18)0.0000 (19)
C40.043 (2)0.048 (2)0.0300 (19)−0.0036 (18)−0.0006 (17)0.0017 (18)
C50.0328 (18)0.040 (2)0.0322 (19)−0.0014 (17)−0.0038 (15)0.0012 (17)
C60.038 (2)0.058 (3)0.039 (2)0.0024 (19)−0.0030 (17)0.0054 (19)
C70.0283 (17)0.065 (3)0.042 (2)0.0008 (19)−0.0018 (16)−0.001 (2)
C80.0311 (18)0.039 (2)0.0362 (19)0.0052 (16)−0.0016 (15)−0.0024 (17)
C90.0282 (17)0.043 (2)0.0319 (19)−0.0013 (16)−0.0053 (15)−0.0007 (16)
C100.0297 (19)0.040 (2)0.035 (2)−0.0021 (16)0.0007 (16)−0.0016 (16)
C110.0297 (18)0.065 (3)0.0313 (19)−0.0065 (19)−0.0005 (15)−0.0022 (19)
C120.0309 (18)0.052 (2)0.034 (2)0.0016 (18)−0.0033 (16)−0.0058 (17)
C130.0308 (18)0.038 (2)0.0311 (18)−0.0021 (15)0.0020 (15)−0.0038 (16)
C140.0269 (17)0.042 (2)0.0349 (19)−0.0031 (16)0.0042 (15)−0.0044 (16)
C150.0309 (19)0.062 (3)0.043 (2)0.0027 (18)−0.0013 (17)−0.0008 (19)
C160.0302 (18)0.060 (3)0.050 (2)0.0003 (19)0.0032 (18)−0.002 (2)
C170.036 (2)0.036 (2)0.041 (2)0.0021 (17)0.0088 (17)−0.0011 (17)
C180.0317 (18)0.040 (2)0.038 (2)0.0027 (16)0.0008 (16)−0.0015 (17)
C190.042 (2)0.040 (2)0.039 (2)−0.0010 (17)−0.0004 (17)−0.0028 (18)
C200.044 (2)0.056 (3)0.043 (2)−0.002 (2)0.004 (2)0.016 (2)
C210.060 (3)0.062 (3)0.045 (2)0.002 (2)0.007 (2)0.005 (2)
C220.043 (2)0.045 (2)0.051 (2)0.0038 (18)0.0128 (19)0.0057 (19)
C230.070 (3)0.060 (3)0.053 (3)0.003 (2)−0.002 (2)0.021 (2)
C240.049 (2)0.076 (3)0.040 (2)−0.008 (2)−0.0032 (19)0.000 (2)
C250.063 (3)0.048 (3)0.049 (2)−0.015 (2)0.003 (2)−0.006 (2)
C260.050 (2)0.049 (3)0.050 (2)0.006 (2)0.0109 (19)0.0034 (19)
C270.045 (2)0.045 (2)0.046 (2)−0.0104 (19)−0.0012 (19)−0.0084 (18)
C280.038 (2)0.052 (3)0.047 (2)0.0067 (19)0.0117 (18)0.0009 (19)
C28A0.042 (2)0.044 (2)0.050 (3)0.0037 (19)0.005 (2)0.005 (2)
C28B0.057 (3)0.050 (3)0.054 (3)0.002 (2)−0.010 (2)−0.004 (2)
C28C0.057 (3)0.098 (4)0.088 (4)0.033 (3)0.009 (3)−0.011 (3)
C28D0.061 (3)0.095 (4)0.054 (3)0.024 (3)0.008 (2)−0.009 (3)
C290.076 (3)0.069 (3)0.095 (4)0.028 (3)−0.025 (3)−0.018 (3)
C300.064 (3)0.110 (4)0.072 (3)0.004 (3)−0.010 (3)−0.004 (3)

Geometric parameters (Å, °)

O3A—C31.423 (4)C14—C151.555 (4)
O3A—H3A0.8200C15—C161.532 (5)
O28A—C28A1.312 (4)C15—H15A0.9700
O28A—C281.462 (4)C15—H15B0.9700
O28B—C28A1.201 (4)C16—C171.520 (5)
N28A—C28B1.357 (5)C16—H16A0.9700
N28A—C28D1.382 (5)C16—H16B0.9700
N28A—C28A1.406 (5)C17—C281.529 (5)
N28B—C28B1.297 (5)C17—C221.539 (5)
N28B—C28C1.363 (6)C17—C181.555 (5)
C1—C21.528 (4)C18—C191.536 (4)
C1—C101.543 (5)C18—H180.9800
C1—H1A0.9700C19—C201.510 (5)
C1—H1B0.9700C19—C211.561 (5)
C2—C31.494 (5)C19—H190.9800
C2—H2A0.9700C20—C291.352 (6)
C2—H2B0.9700C20—C301.433 (6)
C3—C41.546 (5)C21—C221.520 (5)
C3—H30.9800C21—H21A0.9700
C4—C231.535 (5)C21—H21B0.9700
C4—C241.539 (5)C22—H22A0.9700
C4—C51.559 (5)C22—H22B0.9700
C5—C61.526 (5)C23—H23A0.9600
C5—C101.557 (5)C23—H23B0.9600
C5—H50.9800C23—H23C0.9600
C6—C71.524 (4)C24—H24A0.9600
C6—H6A0.9700C24—H24B0.9600
C6—H6B0.9700C24—H24C0.9600
C7—C81.539 (5)C25—H25A0.9600
C7—H7A0.9700C25—H25B0.9600
C7—H7B0.9700C25—H25C0.9600
C8—C261.545 (5)C26—H26A0.9600
C8—C91.566 (4)C26—H26B0.9600
C8—C141.590 (5)C26—H26C0.9600
C9—C111.531 (4)C27—H27A0.9600
C9—C101.565 (4)C27—H27B0.9600
C9—H90.9800C27—H27C0.9600
C10—C251.547 (5)C28—H28A0.9700
C11—C121.520 (4)C28—H28B0.9700
C11—H11A0.9700C28B—H28C0.9300
C11—H11B0.9700C28C—C28D1.341 (6)
C12—C131.528 (4)C28C—H28D0.9300
C12—H12A0.9700C28D—H28E0.9300
C12—H12B0.9700C29—H29A0.9300
C13—C181.536 (4)C29—H29B0.9300
C13—C141.560 (4)C30—H30A0.9600
C13—H130.9800C30—H30B0.9600
C14—C271.554 (5)C30—H30C0.9600
C3—O3A—H3A109.5C17—C16—C15111.5 (3)
C28A—O28A—C28117.4 (3)C17—C16—H16A109.3
C28B—N28A—C28D106.5 (3)C15—C16—H16A109.3
C28B—N28A—C28A129.3 (4)C17—C16—H16B109.3
C28D—N28A—C28A124.2 (4)C15—C16—H16B109.3
C28B—N28B—C28C104.6 (4)H16A—C16—H16B108.0
C2—C1—C10113.1 (3)C16—C17—C28111.7 (3)
C2—C1—H1A109.0C16—C17—C22115.8 (3)
C10—C1—H1A109.0C28—C17—C22109.3 (3)
C2—C1—H1B109.0C16—C17—C18108.6 (3)
C10—C1—H1B109.0C28—C17—C18110.7 (3)
H1A—C1—H1B107.8C22—C17—C18100.1 (3)
C3—C2—C1111.5 (3)C13—C18—C19121.0 (3)
C3—C2—H2A109.3C13—C18—C17111.3 (3)
C1—C2—H2A109.3C19—C18—C17104.4 (3)
C3—C2—H2B109.3C13—C18—H18106.4
C1—C2—H2B109.3C19—C18—H18106.4
H2A—C2—H2B108.0C17—C18—H18106.4
O3A—C3—C2106.8 (3)C20—C19—C18119.0 (3)
O3A—C3—C4113.1 (3)C20—C19—C21110.2 (3)
C2—C3—C4113.9 (3)C18—C19—C21103.2 (3)
O3A—C3—H3107.6C20—C19—H19108.0
C2—C3—H3107.6C18—C19—H19108.0
C4—C3—H3107.6C21—C19—H19108.0
C23—C4—C24108.0 (3)C29—C20—C30120.2 (4)
C23—C4—C3110.6 (3)C29—C20—C19123.5 (4)
C24—C4—C3107.8 (3)C30—C20—C19116.0 (4)
C23—C4—C5113.7 (3)C22—C21—C19107.4 (3)
C24—C4—C5108.4 (3)C22—C21—H21A110.2
C3—C4—C5108.1 (3)C19—C21—H21A110.2
C6—C5—C10110.4 (3)C22—C21—H21B110.2
C6—C5—C4114.3 (3)C19—C21—H21B110.2
C10—C5—C4117.7 (3)H21A—C21—H21B108.5
C6—C5—H5104.2C21—C22—C17104.8 (3)
C10—C5—H5104.2C21—C22—H22A110.8
C4—C5—H5104.2C17—C22—H22A110.8
C7—C6—C5110.8 (3)C21—C22—H22B110.8
C7—C6—H6A109.5C17—C22—H22B110.8
C5—C6—H6A109.5H22A—C22—H22B108.9
C7—C6—H6B109.5C4—C23—H23A109.5
C5—C6—H6B109.5C4—C23—H23B109.5
H6A—C6—H6B108.1H23A—C23—H23B109.5
C6—C7—C8114.1 (3)C4—C23—H23C109.5
C6—C7—H7A108.7H23A—C23—H23C109.5
C8—C7—H7A108.7H23B—C23—H23C109.5
C6—C7—H7B108.7C4—C24—H24A109.5
C8—C7—H7B108.7C4—C24—H24B109.5
H7A—C7—H7B107.6H24A—C24—H24B109.5
C7—C8—C26106.5 (3)C4—C24—H24C109.5
C7—C8—C9109.9 (3)H24A—C24—H24C109.5
C26—C8—C9111.8 (3)H24B—C24—H24C109.5
C7—C8—C14110.4 (3)C10—C25—H25A109.5
C26—C8—C14109.9 (3)C10—C25—H25B109.5
C9—C8—C14108.3 (3)H25A—C25—H25B109.5
C11—C9—C10114.7 (3)C10—C25—H25C109.5
C11—C9—C8110.3 (3)H25A—C25—H25C109.5
C10—C9—C8116.8 (3)H25B—C25—H25C109.5
C11—C9—H9104.5C8—C26—H26A109.5
C10—C9—H9104.5C8—C26—H26B109.5
C8—C9—H9104.5H26A—C26—H26B109.5
C1—C10—C25107.8 (3)C8—C26—H26C109.5
C1—C10—C5107.2 (3)H26A—C26—H26C109.5
C25—C10—C5114.5 (3)H26B—C26—H26C109.5
C1—C10—C9108.1 (3)C14—C27—H27A109.5
C25—C10—C9112.6 (3)C14—C27—H27B109.5
C5—C10—C9106.3 (3)H27A—C27—H27B109.5
C12—C11—C9112.6 (3)C14—C27—H27C109.5
C12—C11—H11A109.1H27A—C27—H27C109.5
C9—C11—H11A109.1H27B—C27—H27C109.5
C12—C11—H11B109.1O28A—C28—C17111.1 (3)
C9—C11—H11B109.1O28A—C28—H28A109.4
H11A—C11—H11B107.8C17—C28—H28A109.4
C11—C12—C13112.2 (3)O28A—C28—H28B109.4
C11—C12—H12A109.2C17—C28—H28B109.4
C13—C12—H12A109.2H28A—C28—H28B108.0
C11—C12—H12B109.2O28B—C28A—O28A127.3 (3)
C13—C12—H12B109.2O28B—C28A—N28A122.6 (4)
H12A—C12—H12B107.9O28A—C28A—N28A110.1 (3)
C12—C13—C18115.1 (3)N28B—C28B—N28A112.2 (4)
C12—C13—C14110.9 (3)N28B—C28B—H28C123.9
C18—C13—C14111.3 (3)N28A—C28B—H28C123.9
C12—C13—H13106.3C28D—C28C—N28B112.1 (4)
C18—C13—H13106.3C28D—C28C—H28D124.0
C14—C13—H13106.3N28B—C28C—H28D124.0
C27—C14—C15105.5 (3)C28C—C28D—N28A104.6 (4)
C27—C14—C13109.4 (3)C28C—C28D—H28E127.7
C15—C14—C13110.7 (3)N28A—C28D—H28E127.7
C27—C14—C8111.4 (3)C20—C29—H29A120.0
C15—C14—C8111.0 (3)C20—C29—H29B120.0
C13—C14—C8108.9 (3)H29A—C29—H29B120.0
C16—C15—C14115.0 (3)C20—C30—H30A109.5
C16—C15—H15A108.5C20—C30—H30B109.5
C14—C15—H15A108.5H30A—C30—H30B109.5
C16—C15—H15B108.5C20—C30—H30C109.5
C14—C15—H15B108.5H30A—C30—H30C109.5
H15A—C15—H15B107.5H30B—C30—H30C109.5
C10—C1—C2—C3−58.5 (4)C9—C8—C14—C27−60.7 (3)
C1—C2—C3—O3A−177.2 (3)C7—C8—C14—C15−57.6 (4)
C1—C2—C3—C457.1 (4)C26—C8—C14—C1559.6 (4)
O3A—C3—C4—C23−48.1 (4)C9—C8—C14—C15−178.0 (3)
C2—C3—C4—C2374.1 (4)C7—C8—C14—C13−179.7 (3)
O3A—C3—C4—C2469.8 (4)C26—C8—C14—C13−62.5 (3)
C2—C3—C4—C24−168.0 (3)C9—C8—C14—C1359.9 (3)
O3A—C3—C4—C5−173.2 (3)C27—C14—C15—C1670.6 (4)
C2—C3—C4—C5−51.0 (4)C13—C14—C15—C16−47.6 (4)
C23—C4—C5—C658.6 (4)C8—C14—C15—C16−168.6 (3)
C24—C4—C5—C6−61.6 (4)C14—C15—C16—C1752.6 (4)
C3—C4—C5—C6−178.2 (3)C15—C16—C17—C2865.0 (4)
C23—C4—C5—C10−73.5 (4)C15—C16—C17—C22−169.0 (3)
C24—C4—C5—C10166.3 (3)C15—C16—C17—C18−57.4 (4)
C3—C4—C5—C1049.7 (4)C12—C13—C18—C1951.4 (4)
C10—C5—C6—C7−63.2 (4)C14—C13—C18—C19178.7 (3)
C4—C5—C6—C7161.3 (3)C12—C13—C18—C17174.4 (3)
C5—C6—C7—C856.1 (4)C14—C13—C18—C17−58.3 (4)
C6—C7—C8—C2675.0 (4)C16—C17—C18—C1361.6 (4)
C6—C7—C8—C9−46.3 (4)C28—C17—C18—C13−61.4 (4)
C6—C7—C8—C14−165.7 (3)C22—C17—C18—C13−176.7 (3)
C7—C8—C9—C11−179.6 (3)C16—C17—C18—C19−166.3 (3)
C26—C8—C9—C1162.3 (4)C28—C17—C18—C1970.7 (4)
C14—C8—C9—C11−58.9 (4)C22—C17—C18—C19−44.6 (3)
C7—C8—C9—C1047.0 (4)C13—C18—C19—C20−79.6 (4)
C26—C8—C9—C10−71.1 (4)C17—C18—C19—C20154.2 (3)
C14—C8—C9—C10167.7 (3)C13—C18—C19—C21158.0 (3)
C2—C1—C10—C25−70.7 (4)C17—C18—C19—C2131.8 (4)
C2—C1—C10—C553.0 (4)C18—C19—C20—C29−22.7 (5)
C2—C1—C10—C9167.4 (3)C21—C19—C20—C2996.1 (5)
C6—C5—C10—C1175.3 (3)C18—C19—C20—C30163.0 (4)
C4—C5—C10—C1−51.0 (4)C21—C19—C20—C30−78.2 (4)
C6—C5—C10—C25−65.2 (4)C20—C19—C21—C22−134.8 (3)
C4—C5—C10—C2568.5 (4)C18—C19—C21—C22−6.7 (4)
C6—C5—C10—C959.8 (4)C19—C21—C22—C17−21.2 (4)
C4—C5—C10—C9−166.5 (3)C16—C17—C22—C21156.3 (3)
C11—C9—C10—C160.2 (4)C28—C17—C22—C21−76.5 (4)
C8—C9—C10—C1−168.4 (3)C18—C17—C22—C2139.8 (4)
C11—C9—C10—C25−58.7 (4)C28A—O28A—C28—C17109.7 (4)
C8—C9—C10—C2572.7 (4)C16—C17—C28—O28A53.7 (4)
C11—C9—C10—C5175.1 (3)C22—C17—C28—O28A−75.7 (4)
C8—C9—C10—C5−53.5 (4)C18—C17—C28—O28A174.9 (3)
C10—C9—C11—C12−169.2 (3)C28—O28A—C28A—O28B−6.5 (6)
C8—C9—C11—C1256.4 (4)C28—O28A—C28A—N28A173.6 (3)
C9—C11—C12—C13−54.2 (4)C28B—N28A—C28A—O28B175.4 (4)
C11—C12—C13—C18−177.3 (3)C28D—N28A—C28A—O28B−1.8 (6)
C11—C12—C13—C1455.2 (4)C28B—N28A—C28A—O28A−4.7 (5)
C12—C13—C14—C2763.5 (4)C28D—N28A—C28A—O28A178.1 (4)
C18—C13—C14—C27−66.0 (3)C28C—N28B—C28B—N28A−0.6 (5)
C12—C13—C14—C15179.4 (3)C28D—N28A—C28B—N28B−0.3 (5)
C18—C13—C14—C1549.8 (4)C28A—N28A—C28B—N28B−177.9 (4)
C12—C13—C14—C8−58.4 (4)C28B—N28B—C28C—C28D1.3 (7)
C18—C13—C14—C8172.1 (3)N28B—C28C—C28D—N28A−1.4 (6)
C7—C8—C14—C2759.6 (4)C28B—N28A—C28D—C28C1.0 (5)
C26—C8—C14—C27176.9 (3)C28A—N28A—C28D—C28C178.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3A—H3A···O28Bi0.822.132.920 (4)162

Symmetry codes: (i) −x+3/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2217).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure New York: Plenum Press.
  • Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M. & Sarek, J. (2006). Nat. Prod. Rep.23, 294–411. [PubMed]
  • Herbez, V. & Fischer, F. (2005). Tetrahedron Lett.46, 6797–6799.
  • Kinghorn, A. D., Su, B. N., Jang, D. S., Chang, L. C., Lee, D., Gu, J. Q., Carcache-Blanco, E. J., Powlus, A. D., Lee, S. K., Park, E. J., Cuendet, M., Gills, J. J., Bhat, K., Park, H. S., Mata-Greenwood, E., Song, L. L., Jong, M. H. & Pezzuto, J. M. (2004). Planta Med.70, 691–705. [PubMed]
  • Moreira, V. M. A., Vasaitis, T. S., Guo, Z. Y., Njar, V. C. O. & Salvador, J. A. R. (2008). Steroids, 73, 1217–1227. [PubMed]
  • Petronelli, A., Pannitteri, G. & Testa, U. (2009). Anticancer Drugs, 20, 880–892. [PubMed]
  • Santos, R. C., Salvador, J. A. R., Marín, S. & Cascante, M. (2009). Bioorg. Med. Chem.17, 6241–6250. [PubMed]
  • Schmidt, M. W., Baldrige, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. J., Koseki, S., Matsunaga, N., Nguyen, K. A., Sue, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem.14, 1347–1363.
  • Setzer, W. N. & Setzer, M. C. (2003). Mini Rev. Med. Chem.3, 540–556. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ramos Silva, M., Matos Beja, A., Moreira, V. M., Santos, R. C. & Salvador, J. A. R. (2007). Acta Cryst. E63, o4824.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tang, Y. Q., Dong, Y. X. & Vennerstrom, J. L. (2004). Synthesis, pp. 2540–2544.
  • Tolstikova, T. G., Sorokina, I. V., Tolstikov, G. A., Tolstikov, A. G. & Flekhter, O. B. (2006). Russ. J. Bioorg. Chem.32, 37–49.
  • Totleben, M. J., Freeman, J. P. & Szmuszkovicz, J. (1997). J. Org. Chem.62, 7319–7323. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography