PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1638.
Published online 2010 June 16. doi:  10.1107/S1600536810021562
PMCID: PMC3007051

(2E)-1-(2-Bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C15H10BrClO, the dihedral angle between the mean planes of the benzene rings in the ortho-bromo- and para-chloro-substituted rings is 70.5 (6)°. The dihedral angles between the mean plane of the prop-2-en-1-one group and the mean planes of the benzene rings in the 4-chloro­phenyl and 2-bromo­phenyl rings are 14.9 (3) and 63.3 (8)°, respectively. In the crystal, inversion dimers linked by pairs of weak C—H(...)O interactions are observed as well as aromatic π–π stacking inter­actions.

Related literature

For the radical quenching properties of the phenol groups present in many chalcones, see: Dhar (1981 [triangle]). For the anti­cancer activity of chalcones, see: Dimmock et al. (1999 [triangle]) and for their anti­malarial activity, see: Troeberg et al. (2000 [triangle]). For their non-linear optical properties, see: Sarojini et al. (2006 [triangle]). For related structures, see: Fun et al. (2008 [triangle]); Li et al. (2009 [triangle]); Ng et al. (2006 [triangle]); Teh et al. (2007 [triangle]); Yang et al. (2006 [triangle]), Jasinski et al. (2009 [triangle], 2010 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1638-scheme1.jpg

Experimental

Crystal data

  • C15H10BrClO
  • M r = 321.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1638-efi1.jpg
  • a = 5.7317 (6) Å
  • b = 9.3920 (7) Å
  • c = 23.6517 (18) Å
  • β = 91.231 (8)°
  • V = 1272.9 (2) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 6.19 mm−1
  • T = 110 K
  • 0.84 × 0.49 × 0.13 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini R diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.039, T max = 0.512
  • 4362 measured reflections
  • 2466 independent reflections
  • 2275 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.126
  • S = 1.05
  • 2466 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −1.07 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021562/zl2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021562/zl2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Chalcones, or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenol groups present in many chalcones have raised interest in using the compounds or chalcone rich plant extracts as drugs or food preservatives (Dhar, 1981). Chalcones have been reported to possess many useful properties, including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, anticancer activities (Dimmock et al., 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000). Chalcones are finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Hence, in continuation with our synthesis and crystal structure determinations of similar compounds (Jasinski et al., 2009; Jasinski et al., 2010) and also owing to the importance of these flavanoid analogs, this new bromo-chloro substituted chalcone, C15H10BrClO, is synthesized and its crystal structure is reported.

The title compound, C15H10BrClO, is a chalcone with 4-chlorophenyl and 2-bromophenyl rings bonded to opposite sides of a propenone group (Fig. 2). The dihedral angle between mean planes of the benzene rings in the ortho-bromo and para-chloro substituted rings is 70.5 (6)°. The angle between the mean plane of the prop-2-ene-1-one group (C1/C7/O/C8) and the mean planes of the benzene rings in the 4-chlorophenyl (C10–CC15) and 2-bromophenyl rings (C1–C6) are 14.9 (3)° and 63.3 (8)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). While no classical hydrogen bonds are present, a weak intermolecular C14—H14A···O interaction (Table 1) and weak π-π stacking interactions [Cg2_perp···Cg2_perp = 3.3466 (14) Å; slippage = 2.931 Å; 1-x, 2-y, 1-z] are observed which contribute to the stability of crystal packing (Fig. 3).

Experimental

A 50% KOH solution was added to a mixture of 2-bromo acetophenone (0.01 mol, 1.99 g) and 4-chloro benzaldehyde (0.01 mol, 1.40 g) in 25 ml of ethanol (Fig. 1). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation and the yield of the compound was 58% (m.p.368–370 K). Analytical data: Composition (%) found (Calculated): C: 55.97 (56.02); H: 3.09(3.13).

Refinement

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances = 0.95Å and with Uiso(H) = 1.18–1.22 Ueq(C).

Figures

Fig. 1.
Reaction Scheme for the title compound.
Fig. 2.
Molecular structure of the title compound, C15H10BrClO, showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 3.
Packing diagram of the title compound, C15H10BrClO viewed down the a axis. Dashed lines indicate a weak C—H···O intermolecular hydrogen bond interaction which links the molecules into chains along the (011) direction.

Crystal data

C15H10BrClOF(000) = 640
Mr = 321.59Dx = 1.678 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2738 reflections
a = 5.7317 (6) Åθ = 4.7–74.2°
b = 9.3920 (7) ŵ = 6.19 mm1
c = 23.6517 (18) ÅT = 110 K
β = 91.231 (8)°Plate, yellow
V = 1272.9 (2) Å30.84 × 0.49 × 0.13 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini R diffractometer2466 independent reflections
Radiation source: Enhance (Cu) X-ray Source2275 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 10.5081 pixels mm-1θmax = 74.2°, θmin = 5.1°
ω scansh = −6→6
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −11→10
Tmin = 0.039, Tmax = 0.512l = −25→29
4362 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0875P)2 + 2.2371P] where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −1.07 e Å3

Special details

Experimental. IR data (KBr) ν cm-1: 2837 cm-1, 2966 cm-1, (C—H al. str) 3061 cm-1, (C—H ar. str), 1655 cm-1 (C=O), 1584 cm-1 (C=C); 1254 cm-1 (C—O—C).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br−0.27391 (6)0.44265 (4)0.639317 (15)0.02097 (17)
Cl0.85133 (14)0.88426 (9)0.35152 (3)0.0207 (2)
O−0.2348 (4)0.7916 (3)0.62618 (11)0.0207 (5)
C10.0767 (5)0.6542 (3)0.66371 (13)0.0132 (6)
C2−0.0160 (6)0.5245 (4)0.68014 (13)0.0168 (7)
C30.0796 (7)0.4490 (4)0.72552 (15)0.0228 (8)
H3A0.01570.35980.73600.027*
C40.2681 (7)0.5048 (4)0.75513 (15)0.0257 (8)
H4A0.33050.45490.78690.031*
C50.3679 (6)0.6328 (4)0.73916 (14)0.0230 (8)
H5A0.49990.66970.75930.028*
C60.2715 (6)0.7065 (4)0.69309 (14)0.0192 (7)
H6A0.33990.79370.68160.023*
C7−0.0380 (6)0.7467 (3)0.61912 (14)0.0150 (6)
C80.0907 (6)0.7835 (4)0.56835 (13)0.0163 (6)
H8A0.02640.85600.54470.020*
C90.2903 (5)0.7243 (3)0.55238 (13)0.0139 (6)
H9A0.35480.65250.57630.017*
C100.4194 (5)0.7595 (3)0.50142 (13)0.0143 (6)
C110.6205 (6)0.6846 (4)0.48865 (13)0.0167 (7)
H11A0.66850.60770.51220.020*
C120.7537 (6)0.7200 (4)0.44200 (14)0.0173 (7)
H12A0.89040.66760.43350.021*
C130.6820 (6)0.8334 (4)0.40819 (13)0.0151 (6)
C140.4794 (6)0.9079 (4)0.41904 (14)0.0189 (7)
H14A0.43030.98360.39500.023*
C150.3494 (6)0.8706 (4)0.46533 (15)0.0201 (7)
H15A0.21000.92130.47280.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0157 (2)0.0143 (2)0.0329 (3)−0.00300 (13)0.00039 (15)−0.00360 (12)
Cl0.0199 (4)0.0216 (4)0.0206 (4)−0.0025 (3)0.0026 (3)0.0022 (3)
O0.0112 (12)0.0199 (13)0.0311 (12)0.0037 (10)0.0003 (9)0.0024 (10)
C10.0071 (14)0.0153 (15)0.0173 (14)0.0035 (12)0.0011 (10)−0.0007 (12)
C20.0191 (17)0.0126 (15)0.0187 (15)0.0031 (13)0.0017 (12)−0.0013 (12)
C30.027 (2)0.0180 (18)0.0232 (16)0.0062 (14)0.0053 (14)0.0054 (13)
C40.0289 (19)0.030 (2)0.0177 (15)0.0130 (17)−0.0004 (13)0.0023 (14)
C50.0163 (17)0.0297 (19)0.0227 (16)0.0080 (15)−0.0047 (13)−0.0056 (14)
C60.0130 (16)0.0191 (17)0.0255 (16)0.0005 (13)−0.0020 (12)−0.0024 (13)
C70.0125 (15)0.0094 (14)0.0230 (15)−0.0002 (12)−0.0031 (11)−0.0009 (12)
C80.0149 (16)0.0143 (15)0.0196 (15)0.0009 (13)−0.0029 (12)0.0023 (12)
C90.0097 (15)0.0122 (14)0.0197 (14)−0.0037 (12)−0.0027 (11)0.0012 (12)
C100.0113 (15)0.0124 (15)0.0190 (14)−0.0022 (12)−0.0030 (11)−0.0017 (12)
C110.0143 (16)0.0150 (15)0.0207 (15)−0.0005 (13)−0.0045 (12)0.0033 (12)
C120.0118 (15)0.0161 (16)0.0240 (15)0.0016 (13)−0.0021 (12)−0.0005 (13)
C130.0121 (15)0.0156 (16)0.0176 (14)−0.0046 (13)−0.0019 (11)−0.0022 (12)
C140.0186 (18)0.0148 (15)0.0232 (15)0.0017 (14)−0.0038 (12)0.0030 (13)
C150.0187 (17)0.0166 (17)0.0249 (16)0.0045 (14)−0.0032 (13)0.0011 (13)

Geometric parameters (Å, °)

Br—C21.910 (3)C8—C91.334 (5)
Cl—C131.739 (3)C8—H8A0.9500
O—C71.219 (4)C9—C101.466 (4)
C1—C21.388 (5)C9—H9A0.9500
C1—C61.392 (4)C10—C111.389 (5)
C1—C71.506 (4)C10—C151.402 (5)
C2—C31.389 (5)C11—C121.395 (5)
C3—C41.378 (6)C11—H11A0.9500
C3—H3A0.9500C12—C131.389 (5)
C4—C51.387 (6)C12—H12A0.9500
C4—H4A0.9500C13—C141.384 (5)
C5—C61.395 (5)C14—C151.383 (5)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.464 (4)
C2—C1—C6118.5 (3)C7—C8—H8A117.1
C2—C1—C7122.6 (3)C8—C9—C10126.2 (3)
C6—C1—C7118.6 (3)C8—C9—H9A116.9
C1—C2—C3121.2 (3)C10—C9—H9A116.9
C1—C2—Br120.6 (2)C11—C10—C15118.2 (3)
C3—C2—Br118.3 (3)C11—C10—C9120.0 (3)
C4—C3—C2119.4 (3)C15—C10—C9121.7 (3)
C4—C3—H3A120.3C10—C11—C12121.5 (3)
C2—C3—H3A120.3C10—C11—H11A119.3
C3—C4—C5121.0 (3)C12—C11—H11A119.3
C3—C4—H4A119.5C13—C12—C11118.5 (3)
C5—C4—H4A119.5C13—C12—H12A120.7
C4—C5—C6118.9 (3)C11—C12—H12A120.7
C4—C5—H5A120.5C14—C13—C12121.3 (3)
C6—C5—H5A120.5C14—C13—Cl119.3 (3)
C1—C6—C5121.0 (3)C12—C13—Cl119.4 (3)
C1—C6—H6A119.5C15—C14—C13119.2 (3)
C5—C6—H6A119.5C15—C14—H14A120.4
O—C7—C8120.9 (3)C13—C14—H14A120.4
O—C7—C1119.7 (3)C14—C15—C10121.2 (3)
C8—C7—C1119.4 (3)C14—C15—H15A119.4
C9—C8—C7125.7 (3)C10—C15—H15A119.4
C9—C8—H8A117.1
C6—C1—C2—C31.2 (5)O—C7—C8—C9−169.4 (3)
C7—C1—C2—C3−172.9 (3)C1—C7—C8—C911.8 (5)
C6—C1—C2—Br−177.0 (2)C7—C8—C9—C10179.4 (3)
C7—C1—C2—Br8.8 (4)C8—C9—C10—C11−177.2 (3)
C1—C2—C3—C40.8 (5)C8—C9—C10—C154.7 (5)
Br—C2—C3—C4179.0 (3)C15—C10—C11—C121.4 (5)
C2—C3—C4—C5−2.1 (6)C9—C10—C11—C12−176.8 (3)
C3—C4—C5—C61.3 (5)C10—C11—C12—C130.4 (5)
C2—C1—C6—C5−2.0 (5)C11—C12—C13—C14−2.0 (5)
C7—C1—C6—C5172.4 (3)C11—C12—C13—Cl177.4 (2)
C4—C5—C6—C10.7 (5)C12—C13—C14—C151.7 (5)
C2—C1—C7—O60.4 (4)Cl—C13—C14—C15−177.7 (3)
C6—C1—C7—O−113.7 (4)C13—C14—C15—C100.2 (5)
C2—C1—C7—C8−120.8 (3)C11—C10—C15—C14−1.7 (5)
C6—C1—C7—C865.1 (4)C9—C10—C15—C14176.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···Oi0.952.443.319 (4)154

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2282).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds New York: John Wiley.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1464. [PMC free article] [PubMed]
  • Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o2641–o2642. [PMC free article] [PubMed]
  • Jasinski, J. P., Butcher, R. J., Narayana, B., Veena, K. & Yathirajan, H. S. (2010). Acta Cryst. E66, o158. [PMC free article] [PubMed]
  • Li, H., Kamath, K. P., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1915.
  • Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175–o2177.
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teh, J. B.-J., Patil, P. S., Fun, H.-K., Satheesh, Y. E., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1844–o1845.
  • Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med.6, 660–669. [PMC free article] [PubMed]
  • Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr.36, 195–198.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography