PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1665.
Published online 2010 June 16. doi:  10.1107/S160053681002101X
PMCID: PMC3007046

(R)-2-Benzyl-4-methyl­pentyl (R)-2-meth­oxy-2-(1-naphth­yl)propionate

Abstract

The relative configuration of the alcohol component in the title ester, C27H32O3, has been assigned as (R) from the known configuration of (R)-(−)-2-meth­oxy-2-(1-naphth­yl)propionic acid [(R)-MαNP acid]. In the crystal structure, the C atom of the methyl group of the MαNP acid lies in the extended plane of the naphthyl ring system [methyl C atom deviates from plane by 0.211 (2) Å; r.m.s. deviation of fitted atoms = 0.0187 Å] and a weak intra­molecular C—H(...)O hydrogen bond links the naphthyl ring system and the meth­oxy group. These structural properties are similar to those of most MαNP acid esters.

Related literature

For general background to the crystalline-state analysis of 2-meth­oxy-2-(1-naphth­yl)propionic acid esters, see: Kuwahara et al. (2007 [triangle]); Sekiguchi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1665-scheme1.jpg

Experimental

Crystal data

  • C27H32O3
  • M r = 404.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1665-efi1.jpg
  • a = 9.3380 (1) Å
  • b = 12.4142 (1) Å
  • c = 10.0317 (5) Å
  • β = 102.8144 (8)°
  • V = 1133.95 (6) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 0.59 mm−1
  • T = 105 K
  • 0.60 × 0.60 × 0.60 mm

Data collection

  • Rigaku R-AXIS RAPID CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.896, T max = 1.000
  • 21388 measured reflections
  • 4133 independent reflections
  • 4042 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.068
  • S = 1.06
  • 4133 reflections
  • 276 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.11 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1592 Friedel pairs
  • Flack parameter: 0.03 (13)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001 [triangle]; Kabuto et al. (2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002101X/zs2041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002101X/zs2041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In a previous paper, we reported that (S)-2-methoxy-2-(1-naphthyl)propionic acid [(S)-MαNP acid] is an efficient auxiliary for enantioresolution of racemic secondary alcohols and the simultaneous determination of the absolute configuration of the resolved alcohols by the Advanced Mosher Method (Kuwahara et al., 2007). We also reported the determination of the absolute configuration of esters condensed with (S)-MαNP acid using X-ray crystallography, by comparison with the known configuration of the asymmetric quaternary carbon of the acid as an internal standard (Sekiguchi et al., 2008). We will report herein that that (R)-MαNP acid is also a useful auxiliary for the identification of remote asymmetric centers in primary alcohols.

2-Isobutyl-3-phenyl-1-propanol was enantioresolved using (R)-(-)-2-methoxy-2-(1-naphthyl)propionic acid and the absolute configuration of the alcohol component of the second fraction from the HPLC separation, the ester C27H32O3 (I) has (Fig. 1) been assigned as R from the known configuration of (R)-MαNP acid. In the structure of (I) there is a weak intramolecular hydrogen bond linking the naphthyl ring and the methoxy group (C13—H···O1) (Table 1, Fig. 1) which results in the carbon atom of the methyl group lying in the extended plane of the naphthyl ring of the MαNP acid moiety. These structural properties are similar to those of most MαNP acid esters (Kuwahara et al., 2007).

Experimental

Two diastereomers were obtained from the reaction of (R)-(-)-2-methoxy-2-(1-naphthyl)propionic acid with 2-isobutyl-3-phenyl-1-propanol (Kuwahara et al., 2007) and were separated by HPLC, eluting with a mixture of ethyl acetate and hexane (50:1). After removal of most of the solvent, the residual oil was allowed to stand for 6 months, giving single crystals suitable for X-ray diffraction analysis.

Refinement

In the refinement of the title compound, the H atom positions were calculated geometrically and refined as riding, with C—H bond lengths of 0.95–1.00 Å, and with Uiso(H) values of 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
Molecular configuration and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C27H32O3F(000) = 436
Mr = 404.53Dx = 1.185 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ybCell parameters from 21196 reflections
a = 9.3380 (1) Åθ = 3.6–68.3°
b = 12.4142 (1) ŵ = 0.59 mm1
c = 10.0317 (5) ÅT = 105 K
β = 102.8144 (8)°Prism, colourless
V = 1133.95 (6) Å30.60 × 0.60 × 0.60 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID CCD diffractometer4133 independent reflections
Radiation source: rotating anode4042 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 68.2°, θmin = 4.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.896, Tmax = 1.000k = −14→14
21388 measured reflectionsl = −12→11

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025w = 1/[σ2(Fo2) + (0.0376P)2 + 0.1169P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
4133 reflectionsΔρmin = −0.11 e Å3
276 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0049 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1592 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.03 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.01084 (12)0.76296 (10)0.04854 (12)0.0259 (2)
O1−0.00374 (10)0.66650 (7)−0.03129 (9)0.0328 (2)
C20.01437 (17)0.67911 (13)−0.16720 (14)0.0422 (3)
H2−0.05600.7325−0.21480.063*
H2A−0.00300.6100−0.21520.063*
H2B0.11460.7035−0.16540.063*
C3−0.12601 (13)0.83375 (11)0.00029 (13)0.0316 (3)
H3−0.12750.8614−0.09150.047*
H3A−0.12320.89430.06360.047*
H3B−0.21450.7907−0.00190.047*
C40.00305 (11)0.72333 (10)0.19225 (12)0.0246 (2)
O2−0.05044 (9)0.63985 (7)0.21644 (9)0.0328 (2)
O30.05702 (9)0.79770 (7)0.28601 (8)0.02774 (18)
C50.15589 (12)0.82122 (9)0.05218 (11)0.0239 (2)
C60.15720 (13)0.92718 (10)0.01434 (12)0.0278 (3)
H60.06660.9633−0.01850.033*
C70.28968 (14)0.98387 (10)0.02292 (12)0.0311 (3)
H70.28741.0570−0.00530.037*
C80.42086 (13)0.93434 (10)0.07136 (12)0.0311 (3)
H80.50970.97340.07820.037*
C90.42564 (12)0.82428 (10)0.11183 (11)0.0267 (3)
C100.56161 (13)0.77226 (11)0.16393 (12)0.0319 (3)
H100.65030.81210.17440.038*
C110.56744 (14)0.66583 (12)0.19930 (13)0.0360 (3)
H110.65950.63180.23300.043*
C120.43639 (14)0.60689 (11)0.18546 (13)0.0358 (3)
H120.44040.53270.20930.043*
C130.30273 (13)0.65541 (10)0.13778 (12)0.0295 (3)
H130.21540.61440.13010.035*
C140.29272 (12)0.76583 (10)0.09975 (11)0.0246 (2)
C150.05451 (13)0.77178 (9)0.42690 (12)0.0255 (2)
H150.12980.71680.46320.031*
H15A−0.04290.74300.43230.031*
C160.08635 (12)0.87537 (10)0.50914 (12)0.0266 (2)
H160.08020.85850.60520.032*
C17−0.02740 (14)0.96247 (10)0.45622 (12)0.0310 (3)
H17−0.02710.97660.35910.037*
H17A0.00371.02970.50770.037*
C18−0.18533 (14)0.93703 (11)0.46642 (14)0.0355 (3)
H18−0.20860.86170.43330.043*
C19−0.29213 (18)1.01300 (13)0.37436 (19)0.0569 (5)
H19−0.39300.99410.37820.085*
H19A−0.28031.00630.28010.085*
H19B−0.27171.08730.40570.085*
C20−0.20296 (16)0.94390 (14)0.61282 (16)0.0480 (4)
H20−0.18231.01760.64670.072*
H20A−0.13420.89410.67000.072*
H20B−0.30380.92450.61640.072*
C210.24294 (14)0.91710 (10)0.51362 (13)0.0313 (3)
H210.25190.93340.41920.038*
H21A0.25760.98530.56610.038*
C220.36296 (13)0.83929 (10)0.57695 (12)0.0292 (3)
C230.44401 (13)0.78389 (11)0.49766 (13)0.0330 (3)
H230.42430.79590.40180.040*
C240.55244 (14)0.71188 (12)0.55646 (13)0.0369 (3)
H240.60700.67540.50080.044*
C250.58239 (14)0.69240 (11)0.69620 (14)0.0360 (3)
H250.65710.64290.73650.043*
C260.50175 (13)0.74623 (12)0.77605 (13)0.0366 (3)
H260.52080.73330.87170.044*
C270.39359 (13)0.81877 (11)0.71708 (13)0.0331 (3)
H270.33930.85520.77300.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0258 (5)0.0274 (6)0.0248 (6)−0.0014 (5)0.0062 (4)−0.0059 (5)
O10.0376 (5)0.0321 (5)0.0302 (4)−0.0074 (4)0.0108 (4)−0.0110 (4)
C20.0490 (8)0.0486 (8)0.0309 (7)−0.0055 (6)0.0133 (6)−0.0142 (6)
C30.0240 (5)0.0424 (7)0.0278 (6)0.0023 (5)0.0042 (5)−0.0010 (5)
C40.0183 (5)0.0259 (6)0.0297 (6)−0.0001 (4)0.0056 (4)−0.0041 (5)
O20.0344 (4)0.0293 (5)0.0350 (5)−0.0086 (4)0.0086 (4)−0.0035 (4)
O30.0350 (4)0.0253 (4)0.0245 (4)−0.0067 (3)0.0099 (3)−0.0035 (3)
C50.0259 (6)0.0273 (6)0.0190 (5)−0.0003 (4)0.0065 (4)−0.0029 (4)
C60.0309 (6)0.0279 (6)0.0246 (6)0.0035 (5)0.0062 (5)0.0003 (5)
C70.0405 (7)0.0279 (6)0.0250 (6)−0.0039 (5)0.0077 (5)0.0026 (5)
C80.0337 (6)0.0373 (7)0.0237 (6)−0.0115 (5)0.0090 (5)−0.0016 (5)
C90.0283 (6)0.0364 (7)0.0168 (5)−0.0007 (5)0.0080 (4)−0.0012 (5)
C100.0244 (5)0.0497 (8)0.0228 (6)−0.0002 (5)0.0080 (4)−0.0022 (5)
C110.0302 (6)0.0520 (9)0.0270 (6)0.0153 (6)0.0092 (5)0.0027 (6)
C120.0407 (7)0.0352 (7)0.0346 (7)0.0129 (6)0.0149 (5)0.0034 (6)
C130.0317 (6)0.0283 (7)0.0311 (6)0.0030 (5)0.0125 (5)−0.0002 (5)
C140.0268 (6)0.0284 (6)0.0201 (5)0.0017 (4)0.0082 (4)−0.0013 (4)
C150.0281 (5)0.0250 (6)0.0244 (5)−0.0007 (5)0.0082 (4)0.0026 (4)
C160.0303 (6)0.0271 (6)0.0234 (6)−0.0007 (5)0.0079 (4)0.0003 (5)
C170.0425 (7)0.0249 (6)0.0249 (6)0.0024 (5)0.0061 (5)−0.0003 (5)
C180.0333 (6)0.0297 (7)0.0388 (7)0.0038 (5)−0.0023 (5)−0.0079 (6)
C190.0455 (9)0.0390 (9)0.0714 (11)0.0092 (7)−0.0189 (8)−0.0095 (8)
C200.0368 (7)0.0573 (10)0.0536 (9)−0.0032 (7)0.0178 (6)−0.0117 (7)
C210.0355 (6)0.0289 (6)0.0302 (6)−0.0072 (5)0.0090 (5)−0.0029 (5)
C220.0274 (6)0.0320 (6)0.0276 (6)−0.0092 (5)0.0051 (5)−0.0030 (5)
C230.0317 (6)0.0418 (7)0.0261 (6)−0.0055 (6)0.0077 (5)−0.0012 (5)
C240.0309 (6)0.0457 (8)0.0355 (7)−0.0030 (6)0.0102 (5)−0.0037 (6)
C250.0267 (6)0.0427 (8)0.0361 (7)−0.0025 (5)0.0016 (5)0.0012 (6)
C260.0314 (6)0.0501 (9)0.0252 (6)−0.0082 (6)−0.0001 (5)−0.0026 (6)
C270.0304 (6)0.0421 (8)0.0269 (6)−0.0096 (5)0.0065 (5)−0.0104 (5)

Geometric parameters (Å, °)

C1—O11.4303 (14)C15—C161.5211 (16)
C1—C51.5288 (15)C15—H150.9900
C1—C31.5379 (16)C15—H15A0.9900
C1—C41.5402 (16)C16—C171.5262 (16)
O1—C21.4192 (16)C16—C211.5426 (16)
C2—H20.9800C16—H161.0000
C2—H2A0.9800C17—C181.5337 (18)
C2—H2B0.9800C17—H170.9900
C3—H30.9800C17—H17A0.9900
C3—H3A0.9800C18—C201.516 (2)
C3—H3B0.9800C18—C191.5258 (19)
C4—O21.1984 (14)C18—H181.0000
C4—O31.3344 (14)C19—H190.9800
O3—C151.4548 (13)C19—H19A0.9800
C5—C61.3700 (17)C19—H19B0.9800
C5—C141.4361 (15)C20—H200.9800
C6—C71.4092 (17)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.3604 (18)C21—C221.5089 (18)
C7—H70.9500C21—H210.9900
C8—C91.4233 (18)C21—H21A0.9900
C8—H80.9500C22—C271.3944 (17)
C9—C101.4169 (17)C22—C231.3949 (18)
C9—C141.4196 (16)C23—C241.3811 (19)
C10—C111.3660 (19)C23—H230.9500
C10—H100.9500C24—C251.3885 (19)
C11—C121.406 (2)C24—H240.9500
C11—H110.9500C25—C261.387 (2)
C12—C131.3728 (17)C25—H250.9500
C12—H120.9500C26—C271.384 (2)
C13—C141.4204 (17)C26—H260.9500
C13—H130.9500C27—H270.9500
O1—C1—C5112.53 (9)C16—C15—H15A110.3
O1—C1—C3109.45 (9)H15—C15—H15A108.5
C5—C1—C3114.03 (10)C15—C16—C17111.91 (9)
O1—C1—C4103.79 (9)C15—C16—C21111.70 (9)
C5—C1—C4110.75 (9)C17—C16—C21110.75 (10)
C3—C1—C4105.59 (9)C15—C16—H16107.4
C2—O1—C1115.39 (10)C17—C16—H16107.4
O1—C2—H2109.5C21—C16—H16107.4
O1—C2—H2A109.5C16—C17—C18115.86 (10)
H2—C2—H2A109.5C16—C17—H17108.3
O1—C2—H2B109.5C18—C17—H17108.3
H2—C2—H2B109.5C16—C17—H17A108.3
H2A—C2—H2B109.5C18—C17—H17A108.3
C1—C3—H3109.5H17—C17—H17A107.4
C1—C3—H3A109.5C20—C18—C19110.78 (13)
H3—C3—H3A109.5C20—C18—C17111.45 (11)
C1—C3—H3B109.5C19—C18—C17109.96 (12)
H3—C3—H3B109.5C20—C18—H18108.2
H3A—C3—H3B109.5C19—C18—H18108.2
O2—C4—O3124.39 (11)C17—C18—H18108.2
O2—C4—C1125.03 (10)C18—C19—H19109.5
O3—C4—C1110.48 (9)C18—C19—H19A109.5
C4—O3—C15116.54 (9)H19—C19—H19A109.5
C6—C5—C14119.33 (10)C18—C19—H19B109.5
C6—C5—C1120.66 (10)H19—C19—H19B109.5
C14—C5—C1119.98 (10)H19A—C19—H19B109.5
C5—C6—C7121.62 (11)C18—C20—H20109.5
C5—C6—H6119.2C18—C20—H20A109.5
C7—C6—H6119.2H20—C20—H20A109.5
C8—C7—C6120.32 (11)C18—C20—H20B109.5
C8—C7—H7119.8H20—C20—H20B109.5
C6—C7—H7119.8H20A—C20—H20B109.5
C7—C8—C9120.31 (11)C22—C21—C16114.08 (10)
C7—C8—H8119.8C22—C21—H21108.7
C9—C8—H8119.8C16—C21—H21108.7
C10—C9—C14119.58 (11)C22—C21—H21A108.7
C10—C9—C8120.77 (11)C16—C21—H21A108.7
C14—C9—C8119.65 (11)H21—C21—H21A107.6
C11—C10—C9121.16 (12)C27—C22—C23117.96 (12)
C11—C10—H10119.4C27—C22—C21120.57 (11)
C9—C10—H10119.4C23—C22—C21121.45 (11)
C10—C11—C12119.61 (12)C24—C23—C22120.98 (12)
C10—C11—H11120.2C24—C23—H23119.5
C12—C11—H11120.2C22—C23—H23119.5
C13—C12—C11120.68 (13)C23—C24—C25120.55 (12)
C13—C12—H12119.7C23—C24—H24119.7
C11—C12—H12119.7C25—C24—H24119.7
C12—C13—C14121.17 (12)C26—C25—C24119.06 (13)
C12—C13—H13119.4C26—C25—H25120.5
C14—C13—H13119.4C24—C25—H25120.5
C9—C14—C13117.78 (10)C27—C26—C25120.33 (12)
C9—C14—C5118.70 (10)C27—C26—H26119.8
C13—C14—C5123.50 (10)C25—C26—H26119.8
O3—C15—C16107.26 (9)C26—C27—C22121.11 (12)
O3—C15—H15110.3C26—C27—H27119.4
C16—C15—H15110.3C22—C27—H27119.4
O3—C15—H15A110.3
C5—C1—O1—C2−54.27 (13)C8—C9—C14—C13178.30 (10)
C3—C1—O1—C273.61 (13)C10—C9—C14—C5177.39 (10)
C4—C1—O1—C2−174.05 (10)C8—C9—C14—C5−2.68 (16)
O1—C1—C4—O2−21.54 (14)C12—C13—C14—C90.39 (16)
C5—C1—C4—O2−142.53 (11)C12—C13—C14—C5−178.57 (11)
C3—C1—C4—O293.57 (13)C6—C5—C14—C92.77 (16)
O1—C1—C4—O3161.89 (8)C1—C5—C14—C9−175.26 (9)
C5—C1—C4—O340.90 (12)C6—C5—C14—C13−178.28 (11)
C3—C1—C4—O3−83.00 (11)C1—C5—C14—C133.69 (17)
O2—C4—O3—C152.47 (16)C4—O3—C15—C16−166.99 (9)
C1—C4—O3—C15179.06 (9)O3—C15—C16—C1759.82 (12)
O1—C1—C5—C6125.29 (11)O3—C15—C16—C21−64.99 (12)
C3—C1—C5—C6−0.14 (15)C15—C16—C17—C1863.25 (13)
C4—C1—C5—C6−119.05 (11)C21—C16—C17—C18−171.41 (10)
O1—C1—C5—C14−56.71 (13)C16—C17—C18—C2073.35 (14)
C3—C1—C5—C14177.87 (10)C16—C17—C18—C19−163.40 (11)
C4—C1—C5—C1458.95 (13)C15—C16—C21—C22−59.85 (13)
C14—C5—C6—C7−1.01 (17)C17—C16—C21—C22174.69 (10)
C1—C5—C6—C7177.01 (10)C16—C21—C22—C27−70.82 (14)
C5—C6—C7—C8−0.91 (18)C16—C21—C22—C23107.61 (13)
C6—C7—C8—C90.99 (17)C27—C22—C23—C24−0.76 (18)
C7—C8—C9—C10−179.25 (11)C21—C22—C23—C24−179.22 (12)
C7—C8—C9—C140.82 (16)C22—C23—C24—C250.5 (2)
C14—C9—C10—C111.84 (17)C23—C24—C25—C260.1 (2)
C8—C9—C10—C11−178.08 (11)C24—C25—C26—C27−0.4 (2)
C9—C10—C11—C12−0.77 (18)C25—C26—C27—C220.12 (19)
C10—C11—C12—C13−0.50 (19)C23—C22—C27—C260.44 (18)
C11—C12—C13—C140.68 (18)C21—C22—C27—C26178.92 (11)
C10—C9—C14—C13−1.62 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···O10.952.402.9887 (15)120

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2041).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  • Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem.11, 1827–1840.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sekiguchi, S., Akagi, M., Naito, J., Yamamoto, Y., Taji, H., Kuwahara, S., Watanabe, M., Ozawa, Y., Toriumi, K. & Harada, N. (2008). Eur. J. Org. Chem.13, 2313–2324.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wakita, K. (2001). Yadokari-XG Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography