PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m748.
Published online 2010 June 5. doi:  10.1107/S1600536810020325
PMCID: PMC3007042

catena-Poly[nickel(II)-bis­(μ-2-amino­ethane­sulfonato-κ3 N,O:O′;κ3 O:N,O′)]

Abstract

In the title polymeric complex, [Ni(C2H6NO3S)2]n, the NiII ion occupies a special position on an inversion centre and displays a slightly distorted octa­hedral coordination geometry, being linked to four sulfonate O atoms and to two N atoms of the taurine ligands. The sulfonate groups doubly bridge symmetry-related NiII centers, forming polymeric chains along the a axis.

Related literature

For general background to taurine complexes and their derivatives, see: Bottari & Festa (1998 [triangle]); Zhang & Jiang (2002 [triangle]); Zeng et al. (2003 [triangle]); Zhong et al. (2003 [triangle]). For our previous work on taurine complexes, see: Cai et al. (2004 [triangle], 2006 [triangle]); Jiang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m748-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H6NO3S)2]
  • M r = 306.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m748-efi1.jpg
  • a = 5.1003 (17) Å
  • b = 8.231 (3) Å
  • c = 11.673 (4) Å
  • β = 97.492 (4)°
  • V = 485.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.44 mm−1
  • T = 293 K
  • 0.20 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.632, T max = 0.829
  • 2116 measured reflections
  • 956 independent reflections
  • 881 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.072
  • S = 1.06
  • 954 reflections
  • 76 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810020325/bh2285sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020325/bh2285Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Youth Foundation of Guangxi Province (No. 0832090) for funding this study. We also thank the startup foundation for Advanced Talents of Hechi University (No. 2008QS-N019)

supplementary crystallographic information

Comment

Taurine, an amino acid containing sulfur, is indispensable to human beings because of its applications in medicine and biochemistry (Bottari & Festa, 1998; Zhang & Jiang, 2002; Zeng et al., 2003; Zhong et al., 2003). Several taurine complexes and their derivatives have recently been prepared in our laboratory (Cai et al., 2004; Jiang et al., 2005; Cai et al., 2006). As part of our ongoing investigation, the title polymeric NiII complex, (I), has been prepared and its structure determined.

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The NiII ion is coordinated by four sulfonate O atoms and to two N atoms of the taurine ligands, displaying distorted octahedral coordination geometry. The sulfonate anions act as bridging ligands in (I). Neighbouring Ni atoms are bridged by two sulfonate anions, to form a zigzag polymeric chain along the a axis, as shown in Fig. 2. The polymeric chain has a repeat unit formed by two taurine and two NiII atoms related by an inversion centre, which coincides with the centre of the eight-membered Ni2S2O4 ring formed by the atoms of two bridging ligands and the Ni atoms; the distance between the two Ni atoms is 5.100 (12) Å. In the structure of the title compound, there are two symmetry-independent "active" H atoms; both of them belong to the NH2 group of the taurine ligand. They form intramolecular hydrogen bonds with sulfonate atom O3.

Experimental

A solution of taurine (1.0 mmol) and KOH (1.0 mmol) in anhydrous methanol (10 ml) was added slowly to a solution of Ni(CH3COO)2 (1.0 mmol) in anhydrous methanol (10 ml). After stirring for 10 min, it was then dropped into a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for five days. Thereafter, the reactor was slowly cooled to room temperature and green block-shaped crystals suitable for X-ray diffraction were collected.

Refinement

H atoms were positioned geometrically (C—H = 0.97 Å and N—H = 0.80 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.
A segment of the polymeric structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms)
Fig. 2.
The one-dimensional polymeric chain of the title complex.

Crystal data

[Ni(C2H6NO3S)2]F(000) = 316
Mr = 306.99Dx = 2.098 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 783 reflections
a = 5.1003 (17) Åθ = 3.0–27.6°
b = 8.231 (3) ŵ = 2.44 mm1
c = 11.673 (4) ÅT = 293 K
β = 97.492 (4)°Block, green
V = 485.9 (3) Å30.20 × 0.16 × 0.08 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer956 independent reflections
Radiation source: fine-focus sealed tube881 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1999)h = −5→6
Tmin = 0.632, Tmax = 0.829k = −6→10
2116 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.044P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
954 reflections(Δ/σ)max = 0.001
76 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.43 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00001.00001.00000.01738 (17)
S10.46761 (11)0.95864 (7)0.81432 (5)0.01601 (18)
O10.6637 (3)1.0584 (2)0.88498 (15)0.0213 (4)
O20.2125 (3)0.9622 (2)0.85798 (16)0.0241 (4)
O30.4412 (4)1.0004 (2)0.69297 (16)0.0255 (4)
C10.5831 (5)0.7569 (3)0.8243 (2)0.0228 (5)
H1A0.44680.68650.78570.027*
H1B0.73630.74840.78330.027*
C20.6583 (4)0.6964 (3)0.9465 (2)0.0222 (5)
H2A0.52920.73400.99460.027*
H2B0.65680.57850.94690.027*
N10.9230 (4)0.7550 (3)0.99449 (19)0.0196 (4)
H1C0.963 (6)0.719 (4)1.058 (3)0.024*
H1D1.023 (6)0.715 (4)0.956 (3)0.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0148 (2)0.0200 (3)0.0172 (3)−0.00114 (15)0.00144 (18)−0.00013 (16)
S10.0137 (3)0.0212 (3)0.0132 (3)0.0001 (2)0.0022 (2)−0.0009 (2)
O10.0194 (8)0.0201 (9)0.0230 (9)−0.0006 (7)−0.0025 (7)−0.0012 (7)
O20.0156 (8)0.0361 (10)0.0216 (10)−0.0001 (7)0.0062 (7)0.0006 (7)
O30.0274 (10)0.0341 (11)0.0153 (10)−0.0008 (7)0.0038 (8)0.0021 (7)
C10.0224 (12)0.0205 (12)0.0243 (13)0.0017 (10)−0.0015 (10)−0.0071 (10)
C20.0196 (11)0.0190 (11)0.0287 (13)−0.0028 (9)0.0060 (10)0.0014 (10)
N10.0204 (10)0.0213 (10)0.0171 (10)0.0001 (9)0.0018 (8)0.0032 (9)

Geometric parameters (Å, °)

Ni1—N1i2.054 (2)O1—Ni1iv2.0916 (17)
Ni1—N1ii2.054 (2)C1—C21.513 (3)
Ni1—O1ii2.0916 (17)C1—H1A0.9700
Ni1—O1i2.0916 (17)C1—H1B0.9700
Ni1—O22.1185 (18)C2—N11.474 (3)
Ni1—O2iii2.1185 (18)C2—H2A0.9700
S1—O31.447 (2)C2—H2B0.9700
S1—O21.4584 (18)N1—Ni1iv2.054 (2)
S1—O11.4630 (18)N1—H1C0.80 (3)
S1—C11.760 (2)N1—H1D0.80 (3)
N1i—Ni1—N1ii180.000 (1)S1—O1—Ni1iv132.53 (11)
N1i—Ni1—O1ii86.09 (8)S1—O2—Ni1147.91 (12)
N1ii—Ni1—O1ii93.91 (8)C2—C1—S1114.49 (17)
N1i—Ni1—O1i93.91 (8)C2—C1—H1A108.6
N1ii—Ni1—O1i86.09 (8)S1—C1—H1A108.6
O1ii—Ni1—O1i180.000 (1)C2—C1—H1B108.6
N1i—Ni1—O293.06 (8)S1—C1—H1B108.6
N1ii—Ni1—O286.94 (8)H1A—C1—H1B107.6
O1ii—Ni1—O289.52 (7)N1—C2—C1110.97 (19)
O1i—Ni1—O290.48 (7)N1—C2—H2A109.4
N1i—Ni1—O2iii86.94 (8)C1—C2—H2A109.4
N1ii—Ni1—O2iii93.06 (8)N1—C2—H2B109.4
O1ii—Ni1—O2iii90.48 (7)C1—C2—H2B109.4
O1i—Ni1—O2iii89.52 (7)H2A—C2—H2B108.0
O2—Ni1—O2iii180.000 (1)C2—N1—Ni1iv119.67 (16)
O3—S1—O2111.34 (11)C2—N1—H1C110 (2)
O3—S1—O1112.85 (11)Ni1iv—N1—H1C108 (2)
O2—S1—O1111.54 (11)C2—N1—H1D106 (2)
O3—S1—C1106.05 (11)Ni1iv—N1—H1D107 (2)
O2—S1—C1107.59 (12)H1C—N1—H1D106 (3)
O1—S1—C1107.09 (11)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x−1, y, z; (iii) −x, −y+2, −z+2; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···O3v0.80 (3)2.50 (3)3.171 (3)143 (3)
N1—H1C···O3vi0.80 (3)2.41 (3)3.121 (3)149 (3)

Symmetry codes: (v) −x+3/2, y−1/2, −z+3/2; (vi) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2285).

References

  • Bottari, E. & Festa, M. R. (1998). Talanta, 46, 91–99. [PubMed]
  • Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059–m3061.
  • Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659–m1661.
  • Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878–m880.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137–m1139.
  • Zhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem.18, 497–500.
  • Zhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem.6, 559–602.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography