PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m865.
Published online 2010 June 30. doi:  10.1107/S1600536810024359
PMCID: PMC3007037

(Acetato-κ2 O,O′)bis­(1,10-phenanthroline-κ2 N,N′)copper(II) trifluoro­acetate tetra­hydrate

Abstract

In the title compound, [Cu(CH3CO2)(C12H8N2)2](CF3CO2)·4H2O, the CuII atom shows a distorted octa­hedral coordination with four N atoms [Cu—N = 2.015 (3)–2.244 (3) Å] from the two phenanthroline ligands and two O atoms from the acetate [Cu—O = 1.953 (3) and 2.764 (3) Å]. Strong inter­molecular O—H(...)O hydrogen-bonding inter­actions consolidate the crystal packing. The F atoms of the anion are disordered over two positions in a 0.5233 (3):0.4767 (3) ratio.

Related literature

For metal–1,10-phenanthroline complexes with carboxyl­ates, see: Sun et al. (2007 [triangle]); Liu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m865-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2O
  • M r = 668.08
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m865-efi1.jpg
  • a = 8.9019 (7) Å
  • b = 11.6662 (9) Å
  • c = 15.698 (1) Å
  • α = 101.619 (1)°
  • β = 101.512 (1)°
  • γ = 108.514 (1)°
  • V = 1451.98 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 293 K
  • 0.28 × 0.25 × 0.19 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.801, T max = 0.859
  • 7689 measured reflections
  • 5112 independent reflections
  • 4389 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.159
  • S = 1.02
  • 5112 reflections
  • 425 parameters
  • 103 restraints
  • H-atom parameters constrained
  • Δρmax = 1.04 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024359/ez2212sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024359/ez2212Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Young Foundation of Shanxi Province for financial support (grant No. 2010021022-1).

supplementary crystallographic information

Comment

Metal complexes with carboxylates are among the most investigated complexes in the field of coordination chemistry, in which metal-1,10-phenanthroline complexes and their derivatives have also attracted much attention during recent decades because of their interesting features (Sun et al., 2007; Liu et al., 2009). In this work, the title compound was obtained by the reaction of trifluoroacetic acid and cupric acetate in the presence of 1,10-phenanthroline as co-ligand.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom exhibits a six-coordinate distorted octahedral geometry with four N atoms [Cu—N 2.015 (3) Å–2.244 (3) Å] from two phenanthroline ligands and two O atoms from the acetate ligand [Cu—O 1.953 (3), 2.764 (3) Å]. Three N atoms and one O atom occupy the equatorial positions with a slight departure from the ideal plane by 0.0563 (2) Å, while one O atom and one N atom lie in the apical positions with an axis angle of 140.63 (10)°, showing a large deviation from the expected 180°. Strong intermolecular O—H···O hydrogen bonding interactions exist.

Experimental

The reaction was carried out by the solvothermal method. Trifluoroacetic acid (0.114 g,1 mmol) and cupric acetate (0.199 g, 1 mmol) and 1,10-phenanthroline (0.312 g, 2 mmol) were added to an airtight vessel with the 21 ml of a 2:1 ethanol-water mixture. The resulting blue solution was filtered. Upon standing, the filtrate yielded blue block-shaped crystals after several days.

The yield is 76% and elemental analysis: calc. for C28H27CuF3N4O8: C 50.34, H 4.07, N 8.39; found: C 50.52, H 4.29, N 8.53. The elemental analyses were performed with PERKIN ELMER MODEL 2400 SERIES II.

Refinement

The Uiso(H) values were set at 1.2Ueq(C—H) for the H atoms from the phen rings and waters, 1.5Ueq(C—H) for the methyl moiety. As the diffraction intensities were of high quality, the H atoms could be located in difference Fourier maps and refined using the riding model. Three disordered F atoms were treated as statistically disordered between two positions with the refined occupancies of 0.5233 (3) and 0.4767 (3), respectively.

Figures

Fig. 1.
The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Crystal data

[Cu(C2H3O2)(C12H8N2)2](C2F3O2)·4H2OZ = 2
Mr = 668.08F(000) = 686
Triclinic, P1Dx = 1.528 Mg m3
a = 8.9019 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6662 (9) ÅCell parameters from 4430 reflections
c = 15.698 (1) Åθ = 2.5–27.8°
α = 101.619 (1)°µ = 0.83 mm1
β = 101.512 (1)°T = 293 K
γ = 108.514 (1)°Block, blue
V = 1451.98 (19) Å30.28 × 0.25 × 0.19 mm

Data collection

Bruker SMART APEX diffractometer5112 independent reflections
Radiation source: fine-focus sealed tube4389 reflections with I > 2σ(I)
graphiteRint = 0.043
phi and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→10
Tmin = 0.801, Tmax = 0.859k = −13→13
7689 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.108P)2 + 0.7243P] where P = (Fo2 + 2Fc2)/3
5112 reflections(Δ/σ)max = 0.002
425 parametersΔρmax = 1.04 e Å3
103 restraintsΔρmin = −0.86 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.70769 (5)0.42710 (4)0.71713 (3)0.0397 (2)
F10.083 (2)0.9968 (17)0.6171 (10)0.133 (4)0.52 (2)
F20.138 (2)0.8377 (11)0.5566 (10)0.118 (4)0.52 (2)
F30.3252 (15)1.0243 (15)0.6021 (9)0.121 (4)0.52 (2)
F1'0.0317 (13)0.9385 (17)0.5837 (12)0.120 (4)0.48 (2)
F2'0.206 (2)0.8680 (17)0.5546 (10)0.117 (4)0.48 (2)
F3'0.263 (2)1.0720 (11)0.6148 (9)0.116 (4)0.48 (2)
N10.5545 (4)0.3202 (3)0.5937 (2)0.0432 (8)
N20.5668 (4)0.5324 (3)0.6982 (2)0.0440 (8)
N30.6031 (4)0.3667 (3)0.8268 (2)0.0439 (8)
N40.8712 (4)0.5606 (3)0.8296 (2)0.0428 (8)
O10.8368 (4)0.3195 (3)0.7158 (2)0.0491 (7)
O20.9846 (4)0.4555 (4)0.6563 (2)0.0676 (9)
O30.1324 (9)0.8811 (7)0.7380 (5)0.146 (2)
O40.3983 (7)0.9689 (5)0.7462 (4)0.1105 (16)
O50.7803 (6)0.8614 (5)0.9518 (4)0.1055 (15)
H5A0.81300.86790.90510.127*
H5B0.84800.92070.99780.127*
O60.7421 (6)0.0847 (4)0.7568 (4)0.0954 (14)
H6A0.75870.15080.73920.115*
H6B0.64190.05420.75700.115*
O70.5361 (8)0.9627 (7)0.9249 (4)0.139 (2)
H7A0.61160.93270.92560.166*
H7B0.52760.99630.88180.166*
O80.9949 (10)1.0217 (8)0.8494 (5)0.176 (3)
H8A0.89090.99970.82940.211*
H8B1.02760.97990.81130.211*
C10.9569 (5)0.3597 (5)0.6812 (3)0.0505 (10)
C21.0606 (7)0.2817 (6)0.6725 (4)0.0720 (15)
H2A1.01920.21090.69510.108*
H2B1.17310.33150.70710.108*
H2C1.05560.25220.60990.108*
C31.0023 (6)0.6569 (4)0.8305 (3)0.0539 (11)
H31.02260.66440.77570.065*
C41.1096 (6)0.7466 (4)0.9102 (4)0.0624 (13)
H41.19980.81260.90820.075*
C51.0821 (6)0.7371 (4)0.9907 (3)0.0583 (12)
H51.15330.79661.04440.070*
C60.9449 (5)0.6366 (4)0.9928 (3)0.0497 (10)
C70.8417 (5)0.5507 (4)0.9101 (3)0.0402 (9)
C80.6997 (5)0.4478 (4)0.9087 (3)0.0401 (9)
C90.6667 (6)0.4339 (4)0.9899 (3)0.0511 (11)
C100.5254 (7)0.3300 (5)0.9842 (4)0.0659 (14)
H100.49850.31741.03680.079*
C110.4303 (7)0.2496 (5)0.9031 (4)0.0676 (14)
H110.33780.18090.89920.081*
C120.4720 (6)0.2712 (4)0.8253 (3)0.0544 (11)
H120.40470.21530.76940.065*
C130.7751 (7)0.5228 (5)1.0731 (3)0.0633 (13)
H130.75360.51361.12740.076*
C140.9071 (7)0.6189 (5)1.0746 (3)0.0627 (13)
H140.97550.67531.13010.075*
C150.5530 (6)0.2158 (4)0.5418 (3)0.0566 (11)
H150.63030.18260.56310.068*
C160.4407 (7)0.1531 (5)0.4566 (3)0.0685 (14)
H160.44530.08060.42140.082*
C170.3246 (7)0.1982 (6)0.4250 (3)0.0719 (16)
H170.24760.15560.36870.086*
C180.3210 (5)0.3089 (5)0.4771 (3)0.0568 (12)
C190.4408 (5)0.3674 (4)0.5617 (3)0.0446 (9)
C200.4465 (5)0.4808 (4)0.6192 (3)0.0435 (9)
C210.3284 (5)0.5328 (5)0.5919 (3)0.0549 (11)
C220.3376 (7)0.6413 (6)0.6535 (4)0.0709 (15)
H220.26170.67880.63920.085*
C230.4577 (8)0.6925 (5)0.7343 (4)0.0720 (15)
H230.46220.76370.77570.086*
C240.5729 (6)0.6375 (5)0.7545 (3)0.0585 (12)
H240.65650.67510.80900.070*
C250.2096 (6)0.4726 (6)0.5058 (4)0.0689 (16)
H250.13260.50730.48700.083*
C260.2068 (6)0.3658 (7)0.4505 (4)0.0698 (16)
H260.12850.32950.39410.084*
C270.2466 (9)0.9333 (5)0.7120 (4)0.0738 (16)
C280.1951 (7)0.9529 (5)0.6193 (4)0.0709 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0400 (3)0.0424 (3)0.0318 (3)0.0131 (2)0.0061 (2)0.0079 (2)
F10.127 (8)0.135 (8)0.138 (8)0.076 (6)−0.004 (6)0.033 (6)
F20.108 (8)0.122 (6)0.075 (5)−0.001 (6)0.009 (6)0.010 (5)
F30.109 (7)0.130 (7)0.119 (6)0.005 (6)0.049 (5)0.070 (6)
F1'0.071 (6)0.127 (8)0.130 (8)0.013 (6)0.004 (5)0.032 (6)
F2'0.118 (8)0.148 (8)0.071 (5)0.060 (7)0.024 (6)−0.015 (6)
F3'0.127 (8)0.102 (7)0.094 (6)0.006 (6)0.018 (6)0.050 (5)
N10.0406 (18)0.0477 (19)0.0347 (17)0.0091 (15)0.0117 (14)0.0089 (15)
N20.0454 (19)0.0455 (19)0.0408 (18)0.0165 (15)0.0121 (15)0.0125 (15)
N30.0445 (19)0.0401 (18)0.0436 (19)0.0126 (15)0.0115 (15)0.0108 (15)
N40.0416 (18)0.0445 (18)0.0366 (17)0.0123 (15)0.0057 (14)0.0110 (15)
O10.0505 (17)0.0550 (17)0.0462 (16)0.0231 (14)0.0162 (13)0.0159 (14)
O20.072 (2)0.080 (2)0.066 (2)0.0317 (19)0.0306 (18)0.038 (2)
O30.175 (6)0.155 (6)0.132 (5)0.042 (5)0.091 (5)0.077 (5)
O40.098 (4)0.090 (3)0.113 (4)0.023 (3)−0.004 (3)0.020 (3)
O50.093 (3)0.131 (4)0.099 (3)0.045 (3)0.031 (3)0.038 (3)
O60.090 (3)0.075 (3)0.127 (4)0.027 (2)0.034 (3)0.044 (3)
O70.136 (5)0.190 (6)0.109 (4)0.102 (5)0.023 (4)0.029 (4)
O80.203 (8)0.259 (9)0.161 (7)0.159 (7)0.096 (6)0.099 (7)
C10.051 (2)0.068 (3)0.034 (2)0.025 (2)0.0098 (18)0.016 (2)
C20.076 (3)0.102 (4)0.062 (3)0.053 (3)0.032 (3)0.030 (3)
C30.051 (3)0.051 (2)0.051 (3)0.009 (2)0.008 (2)0.018 (2)
C40.047 (3)0.045 (3)0.074 (3)0.004 (2)0.001 (2)0.012 (2)
C50.053 (3)0.048 (3)0.052 (3)0.015 (2)−0.007 (2)−0.003 (2)
C60.052 (2)0.052 (2)0.042 (2)0.026 (2)0.0027 (19)0.0063 (19)
C70.044 (2)0.043 (2)0.0327 (19)0.0205 (18)0.0040 (16)0.0087 (16)
C80.045 (2)0.044 (2)0.038 (2)0.0233 (18)0.0126 (17)0.0132 (17)
C90.062 (3)0.062 (3)0.046 (2)0.036 (2)0.023 (2)0.021 (2)
C100.075 (3)0.078 (4)0.068 (3)0.035 (3)0.041 (3)0.037 (3)
C110.066 (3)0.060 (3)0.083 (4)0.019 (3)0.036 (3)0.029 (3)
C120.054 (3)0.044 (2)0.061 (3)0.012 (2)0.020 (2)0.014 (2)
C130.086 (4)0.079 (4)0.036 (2)0.043 (3)0.022 (2)0.017 (2)
C140.075 (3)0.078 (3)0.033 (2)0.039 (3)0.005 (2)0.004 (2)
C150.058 (3)0.053 (3)0.048 (3)0.010 (2)0.018 (2)0.004 (2)
C160.070 (3)0.063 (3)0.049 (3)0.005 (3)0.020 (2)−0.003 (2)
C170.056 (3)0.086 (4)0.034 (2)−0.008 (3)0.005 (2)−0.002 (2)
C180.041 (2)0.078 (3)0.037 (2)0.001 (2)0.0096 (18)0.019 (2)
C190.034 (2)0.056 (2)0.038 (2)0.0049 (18)0.0116 (16)0.0184 (19)
C200.036 (2)0.055 (2)0.042 (2)0.0124 (18)0.0152 (17)0.0231 (19)
C210.043 (2)0.071 (3)0.064 (3)0.022 (2)0.022 (2)0.039 (3)
C220.066 (3)0.079 (4)0.096 (4)0.043 (3)0.035 (3)0.050 (3)
C230.086 (4)0.062 (3)0.083 (4)0.041 (3)0.032 (3)0.022 (3)
C240.068 (3)0.056 (3)0.055 (3)0.029 (2)0.017 (2)0.013 (2)
C250.039 (2)0.108 (5)0.071 (3)0.024 (3)0.015 (2)0.056 (4)
C260.037 (2)0.115 (5)0.047 (3)0.010 (3)0.005 (2)0.038 (3)
C270.094 (4)0.050 (3)0.073 (4)0.018 (3)0.036 (3)0.010 (3)
C280.069 (3)0.065 (3)0.074 (4)0.015 (3)0.028 (3)0.020 (3)

Geometric parameters (Å, °)

Cu1—O11.953 (3)C4—H40.9300
Cu1—N12.015 (3)C5—C61.410 (7)
Cu1—N42.022 (3)C5—H50.9300
Cu1—N22.037 (3)C6—C71.397 (6)
Cu1—N32.244 (3)C6—C141.428 (7)
F1—C281.256 (11)C7—C81.433 (6)
F2—C281.367 (12)C8—C91.392 (6)
F3—C281.308 (10)C9—C101.415 (7)
F1'—C281.393 (12)C9—C131.425 (7)
F2'—C281.311 (12)C10—C111.343 (8)
F3'—C281.351 (11)C10—H100.9301
N1—C151.317 (6)C11—C121.392 (7)
N1—C191.357 (5)C11—H110.9300
N2—C241.337 (6)C12—H120.9300
N2—C201.344 (5)C13—C141.334 (8)
N3—C121.326 (6)C13—H130.9300
N3—C81.357 (5)C14—H140.9300
N4—C31.333 (6)C15—C161.389 (7)
N4—C71.361 (5)C15—H150.9300
O1—C11.294 (5)C16—C171.355 (8)
O2—C11.226 (6)C16—H160.9300
O3—C271.202 (8)C17—C181.396 (8)
O4—C271.245 (8)C17—H170.9300
O5—H5A0.8500C18—C191.406 (6)
O5—H5B0.8500C18—C261.422 (8)
O6—H6A0.8501C19—C201.423 (6)
O6—H6B0.8500C20—C211.410 (6)
O7—H7A0.8500C21—C221.397 (8)
O7—H7B0.8501C21—C251.419 (7)
O8—H8A0.8500C22—C231.363 (8)
O8—H8B0.8500C22—H220.9300
C1—C21.494 (7)C23—C241.391 (7)
C2—H2A0.9600C23—H230.9300
C2—H2B0.9600C24—H240.9300
C2—H2C0.9600C25—C261.356 (8)
C3—C41.390 (7)C25—H250.9300
C3—H30.9300C26—H260.9300
C4—C51.353 (8)C27—C281.521 (9)
O1—Cu1—N191.55 (13)C14—C13—C9121.3 (4)
O1—Cu1—N493.66 (13)C14—C13—H13119.3
N1—Cu1—N4169.21 (13)C9—C13—H13119.4
O1—Cu1—N2171.51 (12)C13—C14—C6121.3 (4)
N1—Cu1—N281.21 (14)C13—C14—H14119.2
N4—Cu1—N292.78 (14)C6—C14—H14119.6
O1—Cu1—N393.94 (12)N1—C15—C16122.8 (5)
N1—Cu1—N3110.64 (13)N1—C15—H15118.5
N4—Cu1—N378.44 (13)C16—C15—H15118.7
N2—Cu1—N392.75 (13)C17—C16—C15119.6 (5)
C15—N1—C19117.9 (4)C17—C16—H16120.2
C15—N1—Cu1129.2 (3)C15—C16—H16120.2
C19—N1—Cu1112.9 (3)C16—C17—C18120.0 (4)
C24—N2—C20118.2 (4)C16—C17—H17120.1
C24—N2—Cu1129.2 (3)C18—C17—H17120.0
C20—N2—Cu1112.5 (3)C17—C18—C19116.7 (5)
C12—N3—C8117.7 (4)C17—C18—C26124.9 (5)
C12—N3—Cu1132.8 (3)C19—C18—C26118.4 (5)
C8—N3—Cu1109.5 (2)N1—C19—C18123.0 (4)
C3—N4—C7118.3 (4)N1—C19—C20116.5 (4)
C3—N4—Cu1125.3 (3)C18—C19—C20120.5 (4)
C7—N4—Cu1116.4 (3)N2—C20—C21123.5 (4)
C1—O1—Cu1110.9 (3)N2—C20—C19116.9 (4)
H5A—O5—H5B109.6C21—C20—C19119.6 (4)
H6A—O6—H6B109.6C22—C21—C20116.4 (4)
H7A—O7—H7B109.8C22—C21—C25124.8 (5)
H8A—O8—H8B108.6C20—C21—C25118.8 (5)
O2—C1—O1122.5 (4)C23—C22—C21120.3 (5)
O2—C1—C2121.4 (4)C23—C22—H22119.8
O1—C1—C2116.0 (4)C21—C22—H22119.9
C1—C2—H2A109.0C22—C23—C24119.6 (5)
C1—C2—H2B109.7C22—C23—H23120.1
H2A—C2—H2B109.5C24—C23—H23120.3
C1—C2—H2C109.8N2—C24—C23122.0 (5)
H2A—C2—H2C109.5N2—C24—H24119.3
H2B—C2—H2C109.5C23—C24—H24118.7
N4—C3—C4122.7 (4)C26—C25—C21121.3 (5)
N4—C3—H3118.7C26—C25—H25119.6
C4—C3—H3118.7C21—C25—H25119.2
C5—C4—C3119.5 (5)C25—C26—C18121.4 (5)
C5—C4—H4120.3C25—C26—H26119.1
C3—C4—H4120.2C18—C26—H26119.5
C4—C5—C6119.7 (4)O3—C27—O4130.9 (7)
C4—C5—H5120.2O3—C27—C28113.8 (7)
C6—C5—H5120.1O4—C27—C28115.2 (6)
C7—C6—C5117.6 (4)F1—C28—F3113.6 (9)
C7—C6—C14118.9 (4)F1—C28—F2'127.6 (11)
C5—C6—C14123.5 (4)F3—C28—F2'81.4 (9)
N4—C7—C6122.2 (4)F1—C28—F3'74.3 (9)
N4—C7—C8118.1 (3)F3—C28—F3'40.5 (6)
C6—C7—C8119.6 (4)F2'—C28—F3'113.5 (10)
N3—C8—C9122.7 (4)F1—C28—F2110.5 (9)
N3—C8—C7117.6 (3)F3—C28—F2106.9 (8)
C9—C8—C7119.7 (4)F2'—C28—F226.1 (8)
C8—C9—C10117.2 (4)F3'—C28—F2132.9 (10)
C8—C9—C13119.1 (4)F1—C28—F1'30.7 (7)
C10—C9—C13123.7 (4)F3—C28—F1'126.8 (10)
C11—C10—C9120.0 (5)F2'—C28—F1'99.2 (9)
C11—C10—H10120.0F3'—C28—F1'96.1 (9)
C9—C10—H10120.0F2—C28—F1'79.8 (9)
C10—C11—C12119.0 (5)F1—C28—C27109.3 (8)
C10—C11—H11120.3F3—C28—C27109.3 (8)
C12—C11—H11120.7F2'—C28—C27112.0 (9)
N3—C12—C11123.4 (5)F3'—C28—C27115.4 (7)
N3—C12—H12118.3F2—C28—C27107.1 (8)
C11—C12—H12118.3F1'—C28—C27119.0 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7—H7A···O50.851.952.787 (8)168
O7—H7B···O40.852.112.854 (8)145
O6—H6A···O10.852.002.844 (5)170
O6—H6B···O4i0.852.032.881 (7)175
O8—H8B···O3ii0.852.032.868 (10)171
O8—H8A···O6iii0.852.172.809 (9)132

Symmetry codes: (i) x, y−1, z; (ii) x+1, y, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2212).

References

  • Bruker (2005). SMART, SAINT andSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Y., Ning, J., Sun, J. & Zhang, C. (2009). Acta Cryst. E65, m113. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, J., Ma, C. & Zhang, R. (2007). Acta Cryst. E63, m2691–m2692.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography