PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1630.
Published online 2010 June 16. doi:  10.1107/S1600536810021720
PMCID: PMC3007036

Methyl 4-(piperidin-1-ylcarbon­yl)benzoate

Abstract

In the title compound, C14H17NO3, the piperidine ring has a chair conformation and an intra­molecular C—H(...)O inter­action stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H(...)O inter­actions occur.

Related literature

For Pd(0)-catalysed carbonyl­ation of aryl halides, see: Jia & Morris (1991 [triangle]); Stille & Wong (1975 [triangle]); Magerlein, et al. (2001 [triangle]); Zhao et al. (2008 [triangle]). For procedural modifications for carbonyl­ation reactions, see: Lagerlund & Larhed (2006 [triangle]). For the preparation of other piperidine derivatives, see Lima et al. (2002 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1630-scheme1.jpg

Experimental

Crystal data

  • C14H17NO3
  • M r = 247.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1630-efi1.jpg
  • a = 5.879 (5) Å
  • b = 9.693 (5) Å
  • c = 12.190 (5) Å
  • α = 69.684 (5)°
  • β = 82.535 (5)°
  • γ = 77.502 (5)°
  • V = 634.9 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.05 × 0.05 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer
  • 4958 measured reflections
  • 2958 independent reflections
  • 2036 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.122
  • S = 1.01
  • 2958 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021720/zs2043sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021720/zs2043Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Brazilian agencies CNPq, FINEP, FAPEMIG and CAPES for financial support. The authors are also grateful to CNPq (ACD), CAPES (RMDA) and PIBIC/CNPq/UNIFAL-MG (IMRL and TES) for providing their respective fellowships. The authors express sincere thanks to LabCRI (UFMG), particularly Professor Nilvado L. Speziali and Carlos B. Pinheiro for the measurements and for support of the X-ray facilities.

supplementary crystallographic information

Comment

There are many methods documented for the synthesis of a wide range of aromatic carboxylic acid derivatives, including benzamides. These compounds can be prepared using palladium(0)-catalyzed carbonylation of aryl halides with various nucleophiles (Zhao et al., 2008; Margerlein et al., 2001; Stille & Wong, 1975). The aminocarbonylation reaction of aryl halides achieved using the commercially available preligand [(tBu)3PH]BF4 as the key component in combination with Herrmann's palladacycle as the Pd source (Jia & Morris, 1991). In other studies procedures employing Mo(CO)6 as a carbon monoxide releasing reagent, together with the use of controlled microwave irradiation as the energy source have been used to overcome the problems of introducing a gaseous reactant in small-scale high-speed protocols (Lagerlund & Larhed, 2006). In addition to other methods for obtaining derivatives of aromatic carboxylic acids, methyl 4-(piperidine-1-carbonyl)benzoate, C14H17N1O3 (I) was prepared from 4-(methoxycarbonyl)benzoic acid in excellent yield, exploring classical methodology, using thionyl chloride as the more electrophilic acid chloride, followed by treatment with piperidine in the presence of chloroform, at room temperature (Lima et al., 2002). The study of this reaction showed that it could be controlled by the stoichimetric and reaction conditions, making the reaction of the piperidine with acyl chloride more favoured than with the ester group, by the use of an easy and convenient method.

In the structure of the title compound (Fig. 1) all bond lengths and angles are in agreement with literature values (Allen et al., 1987). The aromatic ring and the ester are close to planar [C9–C10–C13–O3, -171.21 (12)°; C10–C13–O3–C14, 175.10 (11)°], whereas the carbonyl group is twisted out of the plane of the ring [C12–C7–C6–O1, 122.57 (15)°]. The piperidine ring has the more energetically favored boat conformation, with an intramolecular C5—H···O(carbonyl) interaction [C···O, 2.750 (3) Å] which stabilizes the molecular conformation. As expected, the supramolecular structure has no formal intermolecular hydrogen bonds (Fig. 2).

Experimental

A solution of 0.50 g of 4-(methoxycarbonyl)benzoic acid in 15 ml of chloroform, 0.30 ml of freshly distilled thionyl chloride and a catalytic amount of dimethylformamide was stirred under reflux for 1 h. After this time, the solvent was carefully evaporated at reduced pressure and a solution of 2.78 mmol of piperidine and 0.78 ml of triethylamine in 10 ml of chloroform was added. The reaction mixture was stirred for 30 min at room temperature, after which 10 ml of saturated sodium carbonate aqueous solution was added and the mixture extracted with chloroform (3x15 ml). The organic layer was separated, washed with water, rewashed with brine and dried over anhydrous sodium sulfate. The solvent was evaporated at reduced pressure after which the compound was purified by column chromatography using Merck Silica Gel 60 (0.040–0.063 mm) and a mixture of hexane/ethyl acetate (8:2,V/V) as eluent (0.56 g, 82%). Crystals suitable for X-ray diffraction were grown from a mixture of hexane/ethyl acetate (8:2, V/V). IR (KBr, cm-1): ν 1724, 1680, 1436, 1276, 1114. 1H NMR (200 MHz, CDCl3, p.p.m.): δ 1.27 (m, 2H), 1.70 (m, 2H), 3.33 (m, 2H), 3.74 (m, 2H), 3.95 (s, 3H), 7.47 (d, 3 J = 8.27 Hz), 8.09 (d, 3 J = 8.17). 13C NMR (200 MHz, CDCl3, p.p.m.): δ 24.5, 25.6, 26.5, 42.2, 51.2, 52.6, 126.7, 129.8, 130.8, 140.9, 166.4, 169.2.

Refinement

The H atoms were located from the difference electron density synthesis and allowed to ride on their parent atoms, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.97 Å and Uiso(H)= 1.5Ueq for methyl H atoms or 1.2Ueq for the remaining H atoms.

Figures

Fig. 1.
The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I).

Crystal data

C14H17NO3Z = 2
Mr = 247.29F(000) = 264
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.879 (5) ÅCell parameters from 2414 reflections
b = 9.693 (5) Åθ = 3.3–29.4°
c = 12.190 (5) ŵ = 0.09 mm1
α = 69.684 (5)°T = 150 K
β = 82.535 (5)°Prism, colourless
γ = 77.502 (5)°0.05 × 0.05 × 0.05 mm
V = 634.9 (7) Å3

Data collection

Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometerRint = 0.033
Detector resolution: 10.4186 pixels mm-1θmax = 29.4°, θmin = 3.3°
ω scansh = −7→7
4958 measured reflectionsk = −11→12
2958 independent reflectionsl = −13→16
2036 reflections with I > 2σ(I)

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044w = 1/[σ2(Fo2) + (0.0676P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.25 e Å3
2958 reflectionsΔρmin = −0.26 e Å3
164 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O30.73762 (16)0.78416 (10)0.51830 (8)0.0285 (2)
O21.10549 (18)0.65801 (11)0.54066 (9)0.0377 (3)
O11.41852 (17)1.30674 (12)0.11938 (9)0.0378 (3)
N11.14709 (19)1.30851 (12)0.00274 (9)0.0232 (3)
C71.1642 (2)1.13450 (14)0.20582 (11)0.0214 (3)
C110.8703 (2)1.03005 (14)0.34869 (11)0.0220 (3)
H110.71791.03880.38120.026*
C101.0327 (2)0.90031 (14)0.39573 (11)0.0211 (3)
C130.9679 (2)0.76837 (15)0.49291 (11)0.0240 (3)
C41.3404 (3)1.36011 (16)−0.19405 (12)0.0285 (3)
H4A1.47731.2843−0.1670.034*
H4B1.3891.439−0.26160.034*
C81.3275 (2)1.00679 (15)0.25594 (12)0.0256 (3)
H81.48210.22620.031*
C120.9354 (2)1.14597 (14)0.25349 (11)0.0234 (3)
H120.82591.23160.22140.028*
C51.2352 (3)1.42408 (15)−0.09739 (12)0.0281 (3)
H5A1.35271.4615−0.07250.034*
H5B1.10851.5071−0.12690.034*
C31.1643 (3)1.29141 (15)−0.22919 (12)0.0275 (3)
H3A1.23881.2434−0.28580.033*
H3B1.03721.3697−0.2660.033*
C21.0677 (2)1.17679 (15)−0.12294 (11)0.0260 (3)
H2A0.94531.1417−0.14630.031*
H2B1.19091.0915−0.0930.031*
C61.2522 (2)1.25752 (15)0.10503 (12)0.0233 (3)
C91.2617 (2)0.89002 (15)0.34957 (12)0.0259 (3)
H91.37110.80440.38170.031*
C10.9701 (2)1.24338 (16)−0.02665 (12)0.0258 (3)
H1A0.83381.3201−0.05270.031*
H1B0.92261.16590.04240.031*
C140.6585 (3)0.65522 (17)0.60534 (13)0.0328 (3)
H14A0.72270.56740.58420.049*
H14B0.49120.67070.60880.049*
H14C0.70940.64230.68060.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O30.0247 (5)0.0288 (5)0.0255 (5)−0.0082 (4)0.0020 (4)−0.0002 (4)
O20.0287 (6)0.0328 (6)0.0408 (6)−0.0048 (5)−0.0073 (5)0.0027 (5)
O10.0341 (6)0.0479 (6)0.0359 (6)−0.0257 (5)−0.0023 (5)−0.0085 (5)
N10.0275 (6)0.0235 (6)0.0219 (6)−0.0127 (5)0.0033 (4)−0.0085 (5)
C70.0230 (7)0.0256 (6)0.0204 (7)−0.0095 (5)0.0002 (5)−0.0110 (5)
C110.0180 (7)0.0274 (7)0.0226 (7)−0.0067 (5)0.0020 (5)−0.0102 (6)
C100.0228 (7)0.0254 (7)0.0184 (6)−0.0077 (5)−0.0025 (5)−0.0088 (5)
C130.0234 (7)0.0286 (7)0.0215 (7)−0.0067 (6)−0.0033 (5)−0.0083 (6)
C40.0320 (8)0.0276 (7)0.0240 (7)−0.0118 (6)0.0052 (6)−0.0050 (6)
C80.0175 (7)0.0344 (7)0.0260 (7)−0.0073 (6)0.0012 (5)−0.0108 (6)
C120.0216 (7)0.0233 (7)0.0260 (7)−0.0030 (5)−0.0020 (5)−0.0095 (6)
C50.0356 (8)0.0213 (7)0.0279 (7)−0.0126 (6)0.0033 (6)−0.0064 (6)
C30.0311 (8)0.0294 (7)0.0221 (7)−0.0055 (6)−0.0010 (5)−0.0090 (6)
C20.0286 (8)0.0279 (7)0.0251 (7)−0.0089 (6)−0.0044 (6)−0.0099 (6)
C60.0214 (7)0.0252 (7)0.0259 (7)−0.0077 (5)0.0034 (5)−0.0113 (6)
C90.0221 (7)0.0291 (7)0.0257 (7)−0.0020 (6)−0.0053 (5)−0.0083 (6)
C10.0235 (7)0.0308 (7)0.0250 (7)−0.0103 (6)−0.0004 (5)−0.0087 (6)
C140.0298 (8)0.0348 (8)0.0278 (8)−0.0132 (6)0.0000 (6)0.0008 (6)

Geometric parameters (Å, °)

O3—C131.337 (2)C4—H4B0.97
O3—C141.4514 (17)C8—C91.3826 (19)
O2—C131.2054 (17)C8—H80.93
O1—C61.2320 (18)C12—H120.93
N1—C61.3496 (18)C5—H5A0.97
N1—C11.4655 (19)C5—H5B0.97
N1—C51.4664 (17)C3—C21.5223 (19)
C7—C121.391 (2)C3—H3A0.97
C7—C81.393 (2)C3—H3B0.97
C7—C61.5113 (18)C2—C11.5213 (19)
C11—C121.3861 (18)C2—H2A0.97
C11—C101.3942 (19)C2—H2B0.97
C11—H110.93C9—H90.93
C10—C91.387 (2)C1—H1A0.97
C10—C131.4918 (19)C1—H1B0.97
C4—C51.5191 (19)C14—H14A0.96
C4—C31.520 (2)C14—H14B0.96
C4—H4A0.97C14—H14C0.96
C13—O3—C14115.47 (10)C4—C5—H5B109.6
C6—N1—C1125.92 (11)H5A—C5—H5B108.1
C6—N1—C5119.70 (12)C4—C3—C2110.94 (12)
C1—N1—C5113.67 (11)C4—C3—H3A109.5
C12—C7—C8119.40 (12)C2—C3—H3A109.5
C12—C7—C6123.66 (11)C4—C3—H3B109.5
C8—C7—C6116.86 (12)C2—C3—H3B109.5
C12—C11—C10120.13 (12)H3A—C3—H3B108
C12—C11—H11119.9C1—C2—C3111.32 (11)
C10—C11—H11119.9C1—C2—H2A109.4
C9—C10—C11119.69 (12)C3—C2—H2A109.4
C9—C10—C13118.03 (11)C1—C2—H2B109.4
C11—C10—C13122.26 (12)C3—C2—H2B109.4
O2—C13—O3123.63 (13)H2A—C2—H2B108
O2—C13—C10124.22 (13)O1—C6—N1122.56 (12)
O3—C13—C10112.10 (11)O1—C6—C7118.58 (12)
C5—C4—C3110.68 (12)N1—C6—C7118.86 (12)
C5—C4—H4A109.5C8—C9—C10120.14 (12)
C3—C4—H4A109.5C8—C9—H9119.9
C5—C4—H4B109.5C10—C9—H9119.9
C3—C4—H4B109.5N1—C1—C2110.13 (12)
H4A—C4—H4B108.1N1—C1—H1A109.6
C9—C8—C7120.44 (13)C2—C1—H1A109.6
C9—C8—H8119.8N1—C1—H1B109.6
C7—C8—H8119.8C2—C1—H1B109.6
C11—C12—C7120.15 (12)H1A—C1—H1B108.1
C11—C12—H12119.9O3—C14—H14A109.5
C7—C12—H12119.9O3—C14—H14B109.5
N1—C5—C4110.27 (11)H14A—C14—H14B109.5
N1—C5—H5A109.6O3—C14—H14C109.5
C4—C5—H5A109.6H14A—C14—H14C109.5
N1—C5—H5B109.6H14B—C14—H14C109.5
C12—C11—C10—C92.35 (19)C5—C4—C3—C2−54.04 (15)
C12—C11—C10—C13−175.86 (12)C4—C3—C2—C153.59 (15)
C14—O3—C13—O2−2.60 (19)C1—N1—C6—O1171.43 (13)
C14—O3—C13—C10175.10 (11)C5—N1—C6—O11.71 (19)
C9—C10—C13—O26.5 (2)C1—N1—C6—C7−8.12 (19)
C11—C10—C13—O2−175.28 (13)C5—N1—C6—C7−177.84 (11)
C9—C10—C13—O3−171.20 (11)C12—C7—C6—O1122.57 (15)
C11—C10—C13—O37.03 (18)C8—C7—C6—O1−54.07 (17)
C12—C7—C8—C92.31 (19)C12—C7—C6—N1−57.86 (18)
C6—C7—C8—C9179.10 (12)C8—C7—C6—N1125.50 (14)
C10—C11—C12—C7−1.17 (19)C7—C8—C9—C10−1.1 (2)
C8—C7—C12—C11−1.15 (19)C11—C10—C9—C8−1.19 (19)
C6—C7—C12—C11−177.71 (12)C13—C10—C9—C8177.09 (12)
C6—N1—C5—C4112.46 (14)C6—N1—C1—C2−112.70 (14)
C1—N1—C5—C4−58.47 (15)C5—N1—C1—C257.56 (15)
C3—C4—C5—N155.55 (15)C3—C2—C1—N1−54.21 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5A···O10.972.332.750 (3)105
C14—H14B···O2i0.962.563.436 (4)153

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2043).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Jia, G. & Morris, R. H. (1991). J. Am. Chem. Soc.113, 875–883.
  • Lagerlund, O. & Larhed, M. (2006). J. Comb. Chem.8, 4–6. [PubMed]
  • Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., de Moraes, V. L. G. & Barreiro, E. J. (2002). Bioorg. Med. Chem.10, 3067–3073. [PubMed]
  • Magerlein, W., Indolese, A. F. & Beller, M. (2001). Angew. Chem. Int. Ed.40, 2856–2859. [PubMed]
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stille, J. K. & Wong, P. K. (1975). J. Org. Chem.40, 532–534.
  • Zhao, Y., Jin, L., Li, P. & Lei, A. (2008). J. Am. Chem. Soc.130, 9429–9433. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography