PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1864.
Published online 2010 June 30. doi:  10.1107/S1600536810024712
PMCID: PMC3007031

3,9-Bis(2,4-dichloro­phen­yl)-2,4,8,10-tetra­oxaspiro­[5.5]undeca­ne

Abstract

In the title compound, C19H16Cl4O4, the two halves of the mol­ecule are related by a crystallographic twofold rotation axis passing through the central spiro-C atom. The two non-planar six-membered heterocycles both adopt chair conformations, and the dihedral angle between the two benzene rings is 76.6 (1)°. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For general background to spiranes, see: Cismaş et al. (2005 [triangle]); Mihiş et al. (2008 [triangle]); Sun et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1864-scheme1.jpg

Experimental

Crystal data

  • C19H16Cl4O4
  • M r = 450.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1864-efi2.jpg
  • a = 14.365 (2) Å
  • b = 5.7397 (9) Å
  • c = 11.7464 (19) Å
  • β = 93.275 (3)°
  • V = 966.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.64 mm−1
  • T = 295 K
  • 0.21 × 0.21 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.878, T max = 0.905
  • 5044 measured reflections
  • 1686 independent reflections
  • 1444 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.160
  • S = 1.02
  • 1686 reflections
  • 123 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024712/ez2218sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024712/ez2218Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the Natural Science Foundation of China (No. 20872051).

supplementary crystallographic information

Comment

Owing to their characteristic axial and helical chirality, the stereochemistry of spiranes with six-membered rings has been extensively studied (Cismaş et al., 2005). In the past three decades, most of these investigations were carried out with spiranes containing 1,3-dioxane units (Mihiş et al., 2008; Sun et al., 2010). We herein present the structure of 3,9-bis(2,4-dichlorophenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (Fig. 1).

In the title compound, a 2-fold rotation axis passes through the central spiro-C atom (C9). The two non-planar six-membered heterocycles [(O1, O2 and C7–C10) and (O1A, O2A and C7A–C10A)] both adopt chair conformations, and the dihedral angle between the two benzene rings (C1–C6 and C1A–C6A) is 76.6 (1)°. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules to form one-dimensional chain along the c axis (Fig. 2).

Experimental

To a solution of 2,4-dichlorobenzaldehyde (5 mmol, 0.88 g) and pentaerythritol (3 mmol, 0.41 g) in toluene (25 ml), phosphotungstic acid (1 mol%, 16.5 mg) was added as catalyst. The mixture was refluxed for 6 h to complete the reaction. After reaction, the mixture was allowed to cool to room temperature, and dichloromethane (25 ml) was added to dissolve the product. The insoluble residues were filtered off and the filtrate was dried over anhydrous Na2SO4. The solvent was evaporated under vacuum and the product recrystallized from ethanol to afford a white solid (71% yield, m.p. 469–470 K). Single crystals suitable for X-ray diffraction were also obtained by evaporation of an ethanol solution.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: -x + 1, y, -z + 1/2].
Fig. 2.
One-dimensional stack running along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H16Cl4O4F(000) = 460
Mr = 450.12Dx = 1.546 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 14.365 (2) ÅCell parameters from 2876 reflections
b = 5.7397 (9) Åθ = 2.8–29.5°
c = 11.7464 (19) ŵ = 0.64 mm1
β = 93.275 (3)°T = 295 K
V = 966.9 (3) Å3Block, colorless
Z = 20.21 × 0.21 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer1686 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −17→17
Tmin = 0.878, Tmax = 0.905k = −6→6
5044 measured reflectionsl = −13→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.133P)2] where P = (Fo2 + 2Fc2)/3
1686 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.11833 (4)1.10777 (11)0.35541 (6)0.0638 (3)
Cl20.09727 (5)0.41534 (13)0.65874 (6)0.0751 (3)
O10.39049 (10)1.0814 (2)0.40196 (12)0.0428 (4)
O20.37013 (9)0.7923 (2)0.26477 (12)0.0414 (4)
C10.12123 (14)0.7578 (4)0.50648 (19)0.0483 (6)
H10.05990.79950.51780.058*
C20.17289 (14)0.8801 (3)0.43034 (18)0.0415 (5)
C30.26501 (12)0.8219 (3)0.41278 (16)0.0361 (5)
C40.30282 (15)0.6348 (4)0.47363 (19)0.0455 (5)
H40.36420.59220.46290.055*
C50.25309 (15)0.5092 (4)0.5495 (2)0.0498 (6)
H50.28010.38410.58940.060*
C60.16219 (16)0.5739 (4)0.56487 (19)0.0469 (6)
C70.32422 (14)0.9531 (3)0.33360 (17)0.0388 (5)
H70.28551.05900.28570.047*
C80.44930 (15)1.2158 (4)0.3327 (2)0.0492 (6)
H8A0.49481.29920.38140.059*
H8B0.41181.32980.28980.059*
C90.50001.0610 (4)0.25000.0365 (6)
C100.42682 (15)0.9102 (4)0.18627 (17)0.0427 (5)
H10A0.38771.00730.13570.051*
H10B0.45750.79650.14020.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0494 (4)0.0675 (5)0.0753 (6)0.0257 (3)0.0111 (3)0.0162 (3)
Cl20.0745 (6)0.0858 (6)0.0674 (6)−0.0222 (3)0.0251 (4)0.0137 (3)
O10.0476 (9)0.0412 (8)0.0411 (9)−0.0055 (6)0.0148 (7)−0.0084 (5)
O20.0405 (8)0.0478 (8)0.0371 (8)−0.0064 (6)0.0124 (6)−0.0095 (6)
C10.0344 (10)0.0593 (13)0.0524 (14)0.0033 (9)0.0125 (9)−0.0040 (10)
C20.0357 (10)0.0456 (12)0.0435 (12)0.0069 (8)0.0048 (8)−0.0030 (8)
C30.0316 (10)0.0439 (10)0.0331 (10)0.0029 (8)0.0033 (8)−0.0044 (8)
C40.0355 (11)0.0532 (13)0.0480 (13)0.0095 (8)0.0043 (9)0.0047 (9)
C50.0486 (12)0.0515 (12)0.0491 (13)0.0040 (10)0.0016 (10)0.0098 (10)
C60.0476 (13)0.0525 (12)0.0414 (12)−0.0086 (9)0.0108 (9)−0.0005 (9)
C70.0348 (10)0.0474 (11)0.0347 (11)0.0071 (8)0.0052 (8)0.0018 (8)
C80.0559 (14)0.0384 (11)0.0554 (14)−0.0039 (9)0.0225 (11)−0.0064 (9)
C90.0404 (15)0.0340 (13)0.0362 (15)0.0000.0114 (11)0.000
C100.0417 (11)0.0554 (12)0.0315 (11)−0.0013 (8)0.0082 (9)−0.0012 (8)

Geometric parameters (Å, °)

Cl1—C21.737 (2)C4—H40.9300
Cl2—C61.741 (2)C5—C61.379 (3)
O1—C71.417 (3)C5—H50.9300
O1—C81.431 (2)C7—H70.9800
O2—C71.414 (2)C8—C91.531 (2)
O2—C101.434 (2)C8—H8A0.9700
C1—C61.373 (3)C8—H8B0.9700
C1—C21.386 (3)C9—C10i1.525 (2)
C1—H10.9300C9—C101.525 (2)
C2—C31.391 (3)C9—C8i1.531 (2)
C3—C41.384 (3)C10—H10A0.9700
C3—C71.499 (3)C10—H10B0.9700
C4—C51.378 (3)
C7—O1—C8110.95 (15)O1—C7—C3107.23 (15)
C7—O2—C10111.11 (15)O2—C7—H7110.1
C6—C1—C2118.81 (19)O1—C7—H7110.1
C6—C1—H1120.6C3—C7—H7110.1
C2—C1—H1120.6O1—C8—C9111.43 (16)
C1—C2—C3121.53 (19)O1—C8—H8A109.3
C1—C2—Cl1117.74 (15)C9—C8—H8A109.3
C3—C2—Cl1120.73 (16)O1—C8—H8B109.3
C4—C3—C2117.28 (19)C9—C8—H8B109.3
C4—C3—C7119.37 (17)H8A—C8—H8B108.0
C2—C3—C7123.34 (17)C10i—C9—C10110.8 (2)
C5—C4—C3122.52 (19)C10i—C9—C8i107.54 (12)
C5—C4—H4118.7C10—C9—C8i110.94 (12)
C3—C4—H4118.7C10i—C9—C8110.94 (12)
C4—C5—C6118.3 (2)C10—C9—C8107.54 (12)
C4—C5—H5120.9C8i—C9—C8109.1 (2)
C6—C5—H5120.9O2—C10—C9110.67 (14)
C1—C6—C5121.6 (2)O2—C10—H10A109.5
C1—C6—Cl2119.24 (17)C9—C10—H10A109.5
C5—C6—Cl2119.17 (18)O2—C10—H10B109.5
O2—C7—O1110.06 (16)C9—C10—H10B109.5
O2—C7—C3109.08 (16)H10A—C10—H10B108.1
C6—C1—C2—C3−0.6 (3)C8—O1—C7—O262.5 (2)
C6—C1—C2—Cl1178.60 (17)C8—O1—C7—C3−179.01 (15)
C1—C2—C3—C40.7 (3)C4—C3—C7—O247.8 (2)
Cl1—C2—C3—C4−178.44 (16)C2—C3—C7—O2−133.17 (19)
C1—C2—C3—C7−178.38 (19)C4—C3—C7—O1−71.4 (2)
Cl1—C2—C3—C72.5 (3)C2—C3—C7—O1107.7 (2)
C2—C3—C4—C5−0.4 (3)C7—O1—C8—C9−57.8 (2)
C7—C3—C4—C5178.70 (19)O1—C8—C9—C10i−69.6 (2)
C3—C4—C5—C60.0 (4)O1—C8—C9—C1051.7 (2)
C2—C1—C6—C50.1 (3)O1—C8—C9—C8i172.1 (2)
C2—C1—C6—Cl2−178.77 (16)C7—O2—C10—C959.2 (2)
C4—C5—C6—C10.2 (3)C10i—C9—C10—O269.36 (13)
C4—C5—C6—Cl2179.05 (17)C8i—C9—C10—O2−171.24 (15)
C10—O2—C7—O1−63.4 (2)C8—C9—C10—O2−52.1 (2)
C10—O2—C7—C3179.21 (15)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O2ii0.932.583.425 (3)152
C7—H7···Cl10.982.603.113 (2)113

Symmetry codes: (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2218).

References

  • Bruker (2000). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem.9, 1287–1314.
  • Mihiş, A., Condamine, E., Bogdan, E., Terec, A., Kurtán, T. & Grosu, I. (2008). Molecules, 13, 2848–2858. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct.973, 152–156.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography