PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1704.
Published online 2010 June 18. doi:  10.1107/S1600536810022774
PMCID: PMC3007024

(3R,3aS,6R,6aR)-3-(1-Nitro­eth­yl)perhydro­furo[3,2-b]furan-3,6-diol

Abstract

The mol­ecule of the title compound, C8H13NO6, a sucrose derivative, consists of two fused tetra­hydro­furan rings having the cis arrangement at the ring junctions, giving a V-shaped mol­ecule. An intra­molecular O—H(...)O inter­action occurs. Inter­molecular O—H(...)O hydrogen bonds help to stabilize the crystal structure.

Related literature

For applications of sucrose and its derivatives, see: Chang et al. (2001 [triangle]); Liu et al. (2004 [triangle]); Stutz et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1704-scheme1.jpg

Experimental

Crystal data

  • C8H13NO6
  • M r = 219.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1704-efi1.jpg
  • a = 6.959 (4) Å
  • b = 5.525 (3) Å
  • c = 12.384 (6) Å
  • β = 97.077 (7)°
  • V = 472.5 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 298 K
  • 0.42 × 0.23 × 0.14 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.946, T max = 0.982
  • 2416 measured reflections
  • 935 independent reflections
  • 743 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.129
  • S = 0.98
  • 932 reflections
  • 137 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810022774/jh2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022774/jh2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20572103).

supplementary crystallographic information

Comment

Sugar derivatives are an important class of compounds having a broad spectrum of applications in the chemical, biochemical, medicinal (Chang et al., 2001), and pharmaceutical fields,(Liu et al., 2004; Stutz et al., 1999) Here we report a structure of a novel Sugar derivatives. To develop new applications for sucrose and its derivatives, structural modifications of sucrose have been extensively investigated. As a contribution to the sucrose chemistry, we report here the crystal structure of the title compound.

Molecular structure of title compound is shown in Fig.1. Torsion angle C(6)—C(1)—C(2)—C(3) is -120.4. Intermolecular hydrogen bonds links molecules in crystal structure into three-dimensional structure.

Experimental

Nitroethane and a catalytic amount of Et3N were added to a stirring solution of 1,4:3,6-dianhydrofructose in EtOH. The mixture was stirred at room temperature for 4 h, and evaporated under reduced pressure to dryness. The residue was recrystallized with EtOH to give title compound as a white crystal.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C). Because the absolute configuration was established by the structure determination of a compound containing a chiral reference molecule of known absolute configuration, we have merged the Friedels in the refinement.

Figures

Fig. 1.
The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids.
Fig. 2.
Crystal packing of the title compound, showing a three-dimensional structure, linked by hydrogen bonds(dashed lines).

Crystal data

C8H13NO6F(000) = 232
Mr = 219.19Dx = 1.541 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.959 (4) ÅCell parameters from 895 reflections
b = 5.525 (3) Åθ = 3.0–22.5°
c = 12.384 (6) ŵ = 0.13 mm1
β = 97.077 (7)°T = 298 K
V = 472.5 (4) Å3Colorless, needlelike
Z = 20.42 × 0.23 × 0.14 mm

Data collection

Siemens SMART CCD area-detector diffractometer935 independent reflections
Radiation source: fine-focus sealed tube743 reflections with I > 2σ(I)
graphiteRint = 0.059
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→8
Tmin = 0.946, Tmax = 0.982k = −6→6
2416 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0843P)2] where P = (Fo2 + 2Fc2)/3
932 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9397 (6)0.4876 (9)0.8645 (3)0.0565 (11)
O10.3548 (4)0.4642 (5)0.61605 (19)0.0468 (7)
O20.5198 (4)−0.0131 (5)0.7607 (2)0.0485 (7)
O30.3353 (5)−0.0495 (6)0.55654 (18)0.0586 (9)
H30.3836−0.17130.58650.088*
O40.7338 (4)0.5239 (6)0.6667 (2)0.0475 (8)
H40.66960.51920.60660.071*
O51.0171 (6)0.6770 (9)0.8438 (3)0.0869 (13)
O61.0297 (6)0.3057 (9)0.8937 (3)0.0867 (12)
C10.4230 (5)0.3930 (7)0.7261 (3)0.0402 (10)
H10.37530.50170.77950.048*
C20.3545 (6)0.1339 (7)0.7386 (3)0.0419 (9)
H20.27520.12390.79860.050*
C30.2290 (7)0.0763 (8)0.6291 (3)0.0469 (10)
H3A0.1108−0.01110.64070.056*
C40.1837 (6)0.3261 (9)0.5835 (3)0.0512 (11)
H4A0.15580.32090.50490.061*
H4B0.07320.39490.61330.061*
C50.6784 (6)0.1117 (8)0.7223 (4)0.0463 (10)
H5A0.68220.07850.64560.056*
H5B0.80010.06080.76250.056*
C60.6445 (5)0.3804 (7)0.7401 (3)0.0390 (9)
C70.7219 (5)0.4776 (9)0.8547 (3)0.0454 (10)
H70.67490.64400.85960.055*
C80.6571 (6)0.3377 (10)0.9479 (3)0.0553 (12)
H8A0.70020.17300.94500.083*
H8B0.51840.34130.94290.083*
H8C0.71150.40941.01540.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.056 (2)0.072 (3)0.0384 (18)0.008 (2)−0.0049 (16)−0.008 (2)
O10.0563 (16)0.0408 (16)0.0409 (14)0.0072 (14)−0.0031 (12)0.0095 (13)
O20.0592 (17)0.0359 (16)0.0496 (15)0.0079 (14)0.0034 (13)0.0026 (14)
O30.099 (2)0.0404 (17)0.0355 (14)0.0131 (17)0.0040 (15)0.0019 (14)
O40.0544 (16)0.0548 (19)0.0330 (13)−0.0059 (15)0.0037 (12)−0.0004 (13)
O50.072 (2)0.102 (3)0.081 (3)−0.026 (3)−0.012 (2)0.000 (2)
O60.069 (2)0.099 (3)0.090 (3)0.029 (2)0.001 (2)−0.007 (3)
C10.051 (2)0.039 (2)0.0301 (18)0.010 (2)0.0039 (16)0.0002 (16)
C20.047 (2)0.043 (2)0.0353 (19)0.004 (2)0.0038 (16)0.0008 (18)
C30.057 (2)0.042 (2)0.041 (2)−0.003 (2)0.0034 (18)0.0019 (18)
C40.052 (3)0.054 (3)0.044 (2)0.003 (2)−0.0067 (18)−0.001 (2)
C50.051 (2)0.042 (2)0.046 (2)0.007 (2)0.0061 (18)−0.0064 (19)
C60.050 (2)0.038 (2)0.0289 (19)−0.0013 (18)0.0054 (16)−0.0012 (15)
C70.052 (2)0.048 (2)0.0360 (18)0.008 (2)0.0031 (16)−0.002 (2)
C80.070 (3)0.064 (3)0.033 (2)0.006 (3)0.0090 (18)0.0003 (19)

Geometric parameters (Å, °)

N1—O61.215 (6)C2—H20.9800
N1—O51.219 (6)C3—C41.509 (6)
N1—C71.506 (5)C3—H3A0.9800
O1—C41.430 (5)C4—H4A0.9700
O1—C11.442 (4)C4—H4B0.9700
O2—C21.408 (5)C5—C61.523 (6)
O2—C51.431 (5)C5—H5A0.9700
O3—C31.415 (5)C5—H5B0.9700
O3—H30.8200C6—C71.550 (5)
O4—C61.407 (5)C7—C81.504 (6)
O4—H40.8200C7—H70.9800
C1—C21.523 (6)C8—H8A0.9600
C1—C61.531 (5)C8—H8B0.9600
C1—H10.9800C8—H8C0.9600
C2—C31.552 (5)
O6—N1—O5123.2 (4)O1—C4—H4B110.8
O6—N1—C7118.1 (5)C3—C4—H4B110.8
O5—N1—C7118.7 (4)H4A—C4—H4B108.9
C4—O1—C1106.6 (3)O2—C5—C6106.4 (3)
C2—O2—C5107.6 (3)O2—C5—H5A110.5
C3—O3—H3109.5C6—C5—H5A110.5
C6—O4—H4109.5O2—C5—H5B110.5
O1—C1—C2106.4 (3)C6—C5—H5B110.5
O1—C1—C6109.2 (3)H5A—C5—H5B108.6
C2—C1—C6105.6 (3)O4—C6—C5111.5 (3)
O1—C1—H1111.8O4—C6—C1114.8 (3)
C2—C1—H1111.8C5—C6—C1101.5 (3)
C6—C1—H1111.8O4—C6—C7105.3 (3)
O2—C2—C1107.7 (3)C5—C6—C7115.3 (3)
O2—C2—C3114.2 (3)C1—C6—C7108.6 (3)
C1—C2—C3104.7 (3)C8—C7—N1110.5 (3)
O2—C2—H2110.0C8—C7—C6114.9 (4)
C1—C2—H2110.0N1—C7—C6108.6 (3)
C3—C2—H2110.0C8—C7—H7107.5
O3—C3—C4108.2 (3)N1—C7—H7107.5
O3—C3—C2111.9 (3)C6—C7—H7107.5
C4—C3—C2102.0 (3)C7—C8—H8A109.5
O3—C3—H3A111.4C7—C8—H8B109.5
C4—C3—H3A111.4H8A—C8—H8B109.5
C2—C3—H3A111.4C7—C8—H8C109.5
O1—C4—C3104.7 (3)H8A—C8—H8C109.5
O1—C4—H4A110.8H8B—C8—H8C109.5
C3—C4—H4A110.8
C4—O1—C1—C227.7 (4)O2—C5—C6—C785.8 (4)
C4—O1—C1—C6141.2 (3)O1—C1—C6—O424.1 (4)
C5—O2—C2—C1−22.0 (4)C2—C1—C6—O4138.1 (3)
C5—O2—C2—C393.8 (4)O1—C1—C6—C5−96.3 (3)
O1—C1—C2—O2117.5 (3)C2—C1—C6—C517.7 (3)
C6—C1—C2—O21.5 (4)O1—C1—C6—C7141.7 (3)
O1—C1—C2—C3−4.4 (4)C2—C1—C6—C7−104.3 (4)
C6—C1—C2—C3−120.4 (3)O6—N1—C7—C840.8 (5)
O2—C2—C3—O3−20.6 (5)O5—N1—C7—C8−138.7 (4)
C1—C2—C3—O396.9 (4)O6—N1—C7—C6−86.2 (4)
O2—C2—C3—C4−136.1 (4)O5—N1—C7—C694.4 (5)
C1—C2—C3—C4−18.6 (4)O4—C6—C7—C8−175.5 (3)
C1—O1—C4—C3−40.5 (4)C5—C6—C7—C8−52.1 (5)
O3—C3—C4—O1−82.4 (4)C1—C6—C7—C861.0 (5)
C2—C3—C4—O135.8 (4)O4—C6—C7—N1−51.2 (4)
C2—O2—C5—C634.2 (4)C5—C6—C7—N172.2 (4)
O2—C5—C6—O4−154.1 (3)C1—C6—C7—N1−174.7 (3)
O2—C5—C6—C1−31.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.062.785 (5)147
O4—H4···O3ii0.822.052.777 (4)147
O4—H4···O10.822.232.655 (4)113

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2141).

References

  • Chang, C. W. T., Hui, Y. & Elchert, B. (2001). Tetrahedron Lett.42, 7019–7023.
  • Liu, F.-W., Liu, H.-M., Yu, K. & Zhang, J.-Y. (2004). Carbohydr. Res.339, 2651–2656. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Stutz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography