PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1557.
Published online 2010 June 5. doi:  10.1107/S1600536810020180
PMCID: PMC3007019

4-(Cyano­meth­yl)anilinium 4-methyl­benzene­sulfonate monohydrate

Abstract

In the title salt, C8H9N2 +·C7H7O3S·H2O, the dihedral angle between the cation and anion benzene rings is 50.1 (4)°. In the cation, the cyano­methyl group is twisted from the plane of the benzene ring [C—C—C—N = −86 (12)°]. In the crystal, the cations, anions and water mol­ecules are linked by N—H(...)O and O—H(...)O hydrogen bonds, forming a chain along the c axis.

Related literature

For phase transition materials and metal-organic coordination compounds, see: Zhang et al. (2009 [triangle]); Li et al. (2008 [triangle]); Liu et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1557-scheme1.jpg

Experimental

Crystal data

  • C8H9N2 +·C7H7O3S·H2O
  • M r = 322.38
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-66-o1557-efi1.jpg
  • a = 22.931 (2) Å
  • c = 5.946 (2) Å
  • V = 3126.6 (11) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 K
  • 0.45 × 0.40 × 0.25 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.903, T max = 0.945
  • 15184 measured reflections
  • 3089 independent reflections
  • 2723 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072
  • wR(F 2) = 0.196
  • S = 1.05
  • 3089 reflections
  • 200 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1383 Friedel pairs
  • Flack parameter: 0.05 (16)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020180/jj2033sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020180/jj2033Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

The title compound, (I), is a continuation of our study of phase transition materials, which include organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhanget al., 2009) and the dielectric constant of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate as a function of temperature. Our study indicating that the permittivity is temperature-independent (dielectric constant equals 7.6 to 14.1), suggests that there may be no distinct phase transition in (I) within the measured temperature range.

The asymmetric unit of the title compound (Fig.1),contains 4-(cyanomethyl)anilinium cations, 4-methylbenzenesulfonate anions and water molecules in the stoichiometric ratio of 1:1:1. The dihedral angle between the two cation-anion benzene rings is 50.1 (4)°. In the cation, the cyanomethyl group is twisted from the plane of the benzene ring (C4/C7/C8/N2 = -86 (12)°) and the methyl group is planar with the ring. In the anion, both the sylfonyl and methyl groups are planar with the benxene ring. Bond distances (Allen et al., 1987) and angles are in normal ranges. In the crystal structure (Fig.2), cations, anions and water molecules are linked by intermolecular N—H···O and O—H···O hydrogen bonds, forming a one-dimensional chain along the c axis, assisting crystal packing.

Experimental

2-(4-aminophenyl)acetonitrile was prepared from 2-(4-nitrophenyl)acetonitrile according to the reported method (Liu Y et al., 2005). Single crystals of 4-(cyanomethyl)anilinium 4-methylbenzenesulfonate were prepared by slow evaporation at room temperature of an equuimolar methanol-water solution for 10 h.

Refinement

All the hydrogen atoms could have been discerned in the difference electron density map, nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H = 0.93 Å, with Uĩso(H) = 1.2Ueq(C). Cmethyl—H = 0.96 Å, with Uiso(H)=1.5Ueq(C). N—H = 0.89 Å, Uĩso(H) = 1.5Ueq(N). The hydroxyl hydrogen were placed at ideal positions and refined using a 'rotating' model for hydroxyl H atom with Uiso(H) = 1.5 Ueq (O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, with stacking along the c axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonds.

Crystal data

C8H9N2+·C7H7O3S·H2ODx = 1.370 Mg m3
Mr = 322.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 5655 reflections
Hall symbol: I -4θ = 3.5–27.5°
a = 22.931 (2) ŵ = 0.23 mm1
c = 5.946 (2) ÅT = 293 K
V = 3126.6 (11) Å3Prism, orange
Z = 80.45 × 0.40 × 0.25 mm
F(000) = 1360

Data collection

Rigaku SCXmini diffractometer3089 independent reflections
Radiation source: fine-focus sealed tube2723 reflections with I > 2σ(I)
graphiteRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.5°
CCD_Profile_fitting scansh = −28→28
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −28→28
Tmin = 0.903, Tmax = 0.945l = −7→7
15184 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.196w = 1/[σ2(Fo2) + (0.120P)2 + 1.4624P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3089 reflectionsΔρmax = 0.54 e Å3
200 parametersΔρmin = −0.24 e Å3
5 restraintsAbsolute structure: Flack (1983), 1383 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C90.80554 (19)0.68688 (19)0.6159 (9)0.0451 (10)
C100.7993 (2)0.6601 (2)0.4099 (9)0.0509 (12)
H10A0.83210.65570.31950.061*
C110.74716 (19)0.6397 (2)0.3328 (8)0.0444 (11)
H11A0.74490.62110.19420.053*
C120.69775 (19)0.64693 (18)0.4622 (7)0.0368 (9)
C130.7012 (2)0.6746 (2)0.6699 (8)0.0451 (11)
H13A0.66800.68020.75750.054*
C140.7554 (2)0.6937 (2)0.7428 (9)0.0486 (11)
H14A0.75810.71180.88230.058*
C150.8629 (3)0.7090 (3)0.7022 (12)0.0718 (17)
H15A0.89290.70110.59370.086*
H15B0.87220.68980.84120.086*
H15C0.86040.75030.72690.086*
O10.58469 (14)0.65351 (15)0.4733 (6)0.0567 (10)
O20.62991 (15)0.62234 (19)0.1289 (6)0.0679 (10)
O30.62786 (15)0.55881 (15)0.4448 (7)0.0608 (10)
O40.5601 (2)0.5210 (3)0.7965 (10)0.112 (2)
H4D0.58080.53240.68640.168*
H4B0.57070.53870.91530.168*
S10.62993 (5)0.61860 (5)0.37106 (18)0.0416 (3)
C10.7116 (2)0.49056 (19)1.0648 (8)0.0409 (10)
C20.7262 (2)0.51689 (19)0.8664 (9)0.0468 (10)
H2B0.69850.52270.75460.056*
C30.7830 (2)0.5346 (2)0.8365 (9)0.0512 (12)
H3B0.79340.55360.70420.061*
C40.8251 (2)0.5248 (2)0.9986 (9)0.0451 (11)
C50.8087 (2)0.4970 (2)1.1943 (9)0.0499 (12)
H5A0.83650.48961.30440.060*
C60.7516 (2)0.4798 (2)1.2302 (8)0.0495 (11)
H6A0.74070.46141.36310.059*
C70.8871 (2)0.5456 (3)0.9678 (10)0.0616 (15)
H7A0.89080.58431.03220.074*
H7B0.91300.51991.05010.074*
C80.9054 (3)0.5476 (3)0.7358 (13)0.0763 (18)
N10.65068 (16)0.47274 (18)1.1017 (8)0.0531 (10)
H1A0.63160.50131.17160.080*
H1B0.64990.44071.18610.080*
H1C0.63380.46550.96990.080*
N20.9217 (3)0.5462 (3)0.5409 (11)0.0937 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C90.045 (2)0.037 (2)0.053 (3)−0.0032 (18)0.004 (2)0.001 (2)
C100.043 (2)0.056 (3)0.054 (3)0.001 (2)0.015 (2)−0.003 (2)
C110.048 (3)0.045 (2)0.041 (2)0.001 (2)0.009 (2)−0.006 (2)
C120.043 (2)0.031 (2)0.036 (2)0.0017 (18)0.0014 (18)0.0012 (17)
C130.050 (3)0.046 (2)0.039 (3)0.004 (2)0.005 (2)−0.007 (2)
C140.056 (3)0.043 (2)0.048 (3)0.000 (2)0.005 (2)−0.003 (2)
C150.056 (3)0.069 (4)0.091 (5)−0.015 (3)−0.005 (3)−0.005 (3)
O10.0433 (18)0.059 (2)0.068 (2)0.0101 (16)0.0096 (17)−0.0105 (18)
O20.051 (2)0.111 (3)0.0417 (18)0.009 (2)0.0004 (18)−0.007 (2)
O30.059 (2)0.0404 (18)0.083 (3)−0.0032 (16)−0.0072 (19)0.0012 (17)
O40.107 (4)0.118 (4)0.110 (5)0.026 (3)0.014 (3)0.029 (4)
S10.0416 (6)0.0415 (6)0.0416 (5)0.0043 (5)0.0002 (5)−0.0030 (5)
C10.041 (2)0.037 (2)0.044 (3)0.0030 (18)0.0073 (19)−0.0069 (19)
C20.052 (3)0.042 (2)0.047 (3)0.001 (2)−0.005 (2)0.000 (2)
C30.063 (3)0.045 (3)0.046 (3)−0.003 (2)0.008 (2)0.001 (2)
C40.040 (2)0.045 (3)0.050 (3)−0.0037 (19)0.001 (2)−0.012 (2)
C50.049 (3)0.053 (3)0.048 (3)0.003 (2)−0.005 (2)−0.008 (2)
C60.060 (3)0.052 (3)0.036 (2)0.000 (2)−0.001 (2)0.006 (2)
C70.052 (3)0.070 (4)0.062 (3)−0.006 (3)0.005 (3)−0.027 (3)
C80.056 (4)0.095 (5)0.078 (5)−0.012 (3)0.001 (3)0.003 (4)
N10.042 (2)0.058 (2)0.059 (3)−0.0061 (18)0.005 (2)−0.009 (2)
N20.077 (4)0.124 (5)0.080 (4)−0.016 (4)−0.012 (3)0.005 (4)

Geometric parameters (Å, °)

C9—C101.378 (7)C1—C21.367 (7)
C9—C141.384 (7)C1—C61.367 (7)
C9—C151.500 (7)C1—N11.473 (6)
C10—C111.363 (7)C2—C31.376 (7)
C10—H10A0.9300C2—H2B0.9300
C11—C121.379 (6)C3—C41.383 (7)
C11—H11A0.9300C3—H3B0.9300
C12—C131.391 (6)C4—C51.380 (7)
C12—S11.771 (4)C4—C71.511 (7)
C13—C141.388 (7)C5—C61.384 (7)
C13—H13A0.9300C5—H5A0.9300
C14—H14A0.9300C6—H6A0.9300
C15—H15A0.9600C7—C81.442 (9)
C15—H15B0.9600C7—H7A0.9700
C15—H15C0.9600C7—H7B0.9700
O1—S11.445 (3)C8—N21.218 (9)
O2—S11.443 (4)N1—H1A0.8900
O3—S11.440 (4)N1—H1B0.8900
O4—H4D0.8500N1—H1C0.8900
O4—H4B0.8499
C10—C9—C14116.6 (4)C2—C1—C6122.5 (4)
C10—C9—C15123.1 (5)C2—C1—N1118.9 (4)
C14—C9—C15120.2 (5)C6—C1—N1118.6 (4)
C11—C10—C9122.9 (4)C1—C2—C3118.3 (5)
C11—C10—H10A118.5C1—C2—H2B120.9
C9—C10—H10A118.5C3—C2—H2B120.9
C10—C11—C12119.4 (5)C2—C3—C4121.5 (5)
C10—C11—H11A120.3C2—C3—H3B119.3
C12—C11—H11A120.3C4—C3—H3B119.3
C11—C12—C13120.3 (4)C3—C4—C5118.2 (4)
C11—C12—S1120.4 (3)C3—C4—C7121.4 (5)
C13—C12—S1119.3 (3)C5—C4—C7120.4 (5)
C14—C13—C12118.2 (4)C6—C5—C4121.4 (5)
C14—C13—H13A120.9C6—C5—H5A119.3
C12—C13—H13A120.9C4—C5—H5A119.3
C9—C14—C13122.6 (5)C1—C6—C5118.1 (4)
C9—C14—H14A118.7C1—C6—H6A120.9
C13—C14—H14A118.7C5—C6—H6A120.9
C9—C15—H15A109.5C8—C7—C4113.6 (5)
C9—C15—H15B109.5C8—C7—H7A108.9
H15A—C15—H15B109.5C4—C7—H7A108.9
C9—C15—H15C109.5C8—C7—H7B108.9
H15A—C15—H15C109.5C4—C7—H7B108.9
H15B—C15—H15C109.5H7A—C7—H7B107.7
H4D—O4—H4B109.5N2—C8—C7176.5 (9)
O3—S1—O2111.1 (3)C1—N1—H1A109.5
O3—S1—O1112.1 (2)C1—N1—H1B109.5
O2—S1—O1112.8 (2)H1A—N1—H1B109.5
O3—S1—C12106.6 (2)C1—N1—H1C109.5
O2—S1—C12106.5 (2)H1A—N1—H1C109.5
O1—S1—C12107.4 (2)H1B—N1—H1C109.5
C14—C9—C10—C11−1.5 (7)C13—C12—S1—O128.4 (4)
C15—C9—C10—C11179.5 (5)C6—C1—C2—C3−2.0 (7)
C9—C10—C11—C121.5 (8)N1—C1—C2—C3178.4 (4)
C10—C11—C12—C13−0.2 (7)C1—C2—C3—C41.9 (7)
C10—C11—C12—S1−177.7 (4)C2—C3—C4—C5−0.5 (7)
C11—C12—C13—C14−0.9 (7)C2—C3—C4—C7−178.5 (5)
S1—C12—C13—C14176.7 (4)C3—C4—C5—C6−0.8 (7)
C10—C9—C14—C130.3 (7)C7—C4—C5—C6177.2 (5)
C15—C9—C14—C13179.3 (5)C2—C1—C6—C50.8 (7)
C12—C13—C14—C90.8 (7)N1—C1—C6—C5−179.6 (4)
C11—C12—S1—O385.7 (4)C4—C5—C6—C10.7 (7)
C13—C12—S1—O3−91.8 (4)C3—C4—C7—C8−30.1 (8)
C11—C12—S1—O2−33.0 (4)C5—C4—C7—C8152.0 (6)
C13—C12—S1—O2149.5 (4)C4—C7—C8—N2−86 (12)
C11—C12—S1—O1−154.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4D···O30.851.902.746 (7)179
N1—H1A···O3i0.892.092.886 (6)148
N1—H1B···O1ii0.892.112.850 (6)140
N1—H1C···O40.892.352.972 (6)127

Symmetry codes: (i) x, y, z+1; (ii) y, −x+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2033).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Liu, Y., Lu, Y., Prashad, M., Repic, O. & Blacklock, T. (2005). Adv. Synth. Catal.347, 217–219.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography