PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1668.
Published online 2010 June 16. doi:  10.1107/S1600536810021598
PMCID: PMC3007018

Cholest-5-en-7-one

Abstract

In the deca­hydro­phenanthrenone ring system of the title compound, C27H44O, the two cyclo­hexane rings adopt chair conformations, whereas the cyclo­hexene ring adopts an envelope conformation. The cyclo­pentane ring is twisted. In the crystal structure, mol­ecules are stacked along the a axis, but no significant inter­molecular inter­actions are observed.

Related literature

For general background to and the biological activity of steroid derivatives, see: Drach et al. (2000 [triangle]); Grover et al. (2007 [triangle]); Khan & Yusuf (2009 [triangle]). For the synthesis of title compound, see: Dauben & Takemura (1953 [triangle]); Ruiz (1958 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For details of ring conformations, see: Cremer & Pople (1975 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1668-scheme1.jpg

Experimental

Crystal data

  • C27H44O
  • M r = 384.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1668-efi1.jpg
  • a = 6.3468 (13) Å
  • b = 11.517 (3) Å
  • c = 15.678 (3) Å
  • β = 91.470 (5)°
  • V = 1145.6 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 100 K
  • 0.25 × 0.18 × 0.03 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.984, T max = 0.998
  • 13066 measured reflections
  • 3512 independent reflections
  • 2776 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.132
  • S = 1.04
  • 3512 reflections
  • 252 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021598/is2558sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021598/is2558Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia for providing research facilities. HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). MSK thanks USM for the award of post doctoral fellowship and CKQ thanks USM for the award of USM Fellowship.

supplementary crystallographic information

Comment

Steroids are compounds of biological origin and play an important role in biological systems. The dramatic expansion of steroidal chemistry came with the discovery of steroidal hormones. The discovery of several steroids with their wide application in therapy have brought about an increasing interest (Grover et al., 2007). During the last decade, the major efforts of the chemists were directed towards the modification of the structures of steroids in order to enhance their biologically activity (Khan & Yusuf, 2009; Drach et al., 2000).

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. The cyclopentane ring, C1/C14–C17 is twisted about the C1–C14 with the puckering parameters (Cremer & Pople, 1975) Q = 0.442 (3) Å and [var phi] = 191.8 (3)°. In the tetradecahydrophenanthrene ring system, two cyclohexane rings, C5—C10 and C1—C4/C13/C14 adopt chair conformations with the puckering parameters Q = 0.539 (3) Å, Θ = 170.8 (3)° and [var phi] = 320 (2)°; and Q = 0.585 (3) Å, Θ = 173.3 (3)° and [var phi] = 150 (2) °, respectively, whereas C4/C5/C10—C13 adopts an envelope conformation with atom C4 deviating by 0.317 (2) Å from the mean plane through the remaining atoms, puckering parameters Q = 0.456 (3) Å, Θ = 51.6 (4)° and [var phi] = 343.4 (4)°. The butyl (C19—C22) substituent at C18 is nearly planar, this plane lying almost perpendicular to the least-squares plane of the cyclopentane ring. The maximum deviation of the atoms C19, C20, C21 and C22 from their mean plane is 0.002 (3) Å for atoms C19, C21 and C22; and the dihedral angle between the plane of the butyl group and the least-squares plane through cyclopentane ring is 80.0 (2)°. In the crystal packing (Fig. 2), the molecules are stacked along the crystallographic a axis.

Experimental

A solution of butyl chromate [tert-butyl alcohol (60 ml), CrO3 (20 g), acetic acid (84 ml) and acetic anhydride (10 ml)] (Ruiz, 1958) was added at 0 °C to a solution of cholest-5-ene (8 g) in CCl4 (150 ml), acetic acid (30 ml) and acetic anhydride (10 ml). The contents were refluxed for 3 h and then diluted with water. The organic layer was washed with sodium bicarbonate solution (5%) and water; and then dried over anhydrous sodium sulfate. Evaporation of the solvents under reduced pressure provided cholest-5-en-7-one which was crystallized from methanol (3.1 g), m.p. 128 °C (reported, m.p. 125–129 °C; Dauben & Takemura, 1953).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.07 Å from C24 and the deepest hole is located at 0.60 Å from C24. In the absence of significant anomalous dispersion, 2670 Friedel pairs were merged in the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound viewed along the a axis.

Crystal data

C27H44OF(000) = 428
Mr = 384.62Dx = 1.115 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2115 reflections
a = 6.3468 (13) Åθ = 2.2–27.8°
b = 11.517 (3) ŵ = 0.07 mm1
c = 15.678 (3) ÅT = 100 K
β = 91.470 (5)°Plate, colourless
V = 1145.6 (4) Å30.25 × 0.18 × 0.03 mm
Z = 2

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer3512 independent reflections
Radiation source: fine-focus sealed tube2776 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 30.2°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −8→8
Tmin = 0.984, Tmax = 0.998k = −16→16
13066 measured reflectionsl = −21→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3776P] where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
252 parametersΔρmax = 0.51 e Å3
1 restraintΔρmin = −0.43 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.4772 (3)0.33629 (19)1.00165 (15)0.0316 (5)
C1−0.0378 (3)0.1067 (2)0.87139 (16)0.0161 (5)
C20.1540 (4)0.0845 (2)0.92977 (16)0.0201 (5)
H2A0.24070.15390.93230.024*
H2B0.23760.02240.90610.024*
C30.0906 (4)0.0514 (2)1.02042 (17)0.0225 (5)
H3A0.21710.04261.05590.027*
H3B0.0194−0.02321.01850.027*
C4−0.0544 (4)0.1409 (2)1.06179 (16)0.0185 (5)
H4A0.02780.21261.06780.022*
C5−0.1179 (4)0.1052 (2)1.15351 (16)0.0196 (5)
C60.0827 (4)0.1099 (3)1.21199 (18)0.0283 (6)
H6A0.17570.04701.19630.034*
H6B0.15580.18231.20160.034*
C70.0402 (5)0.1007 (3)1.30742 (18)0.0344 (7)
H7A−0.02240.02591.31960.041*
H7B0.17190.10671.33990.041*
C8−0.1088 (5)0.1976 (3)1.33392 (19)0.0382 (7)
H8A−0.13750.19061.39420.046*
H8B−0.04320.27251.32460.046*
C9−0.3134 (5)0.1899 (3)1.28214 (18)0.0292 (6)
H9A−0.38670.11931.29750.035*
H9B−0.40240.25511.29650.035*
C10−0.2795 (4)0.1900 (2)1.18697 (17)0.0210 (5)
C11−0.3927 (4)0.2611 (2)1.13562 (17)0.0225 (5)
H11A−0.48620.31191.16100.027*
C12−0.3792 (4)0.2643 (2)1.04303 (17)0.0200 (5)
C13−0.2455 (4)0.1700 (2)1.00234 (16)0.0171 (5)
H13A−0.33210.10000.99580.021*
C14−0.1667 (4)0.2043 (2)0.91427 (16)0.0163 (5)
H14A−0.06870.26900.92390.020*
C15−0.3230 (4)0.2445 (2)0.84445 (16)0.0222 (5)
H15A−0.36370.32470.85310.027*
H15B−0.44850.19640.84320.027*
C16−0.1995 (4)0.2306 (2)0.76141 (17)0.0219 (5)
H16A−0.16740.30620.73770.026*
H16B−0.28260.18740.71950.026*
C170.0071 (4)0.1643 (2)0.78416 (16)0.0176 (5)
H17A0.11780.22240.79410.021*
C180.0752 (4)0.0879 (2)0.70931 (16)0.0196 (5)
H18A−0.03750.03100.69920.024*
C190.0939 (4)0.1585 (3)0.62657 (16)0.0233 (5)
H19A0.12680.10530.58080.028*
H19B−0.04270.19240.61280.028*
C200.2579 (4)0.2556 (2)0.62794 (17)0.0221 (5)
H20A0.23180.30720.67540.027*
H20B0.39710.22230.63660.027*
C210.2520 (4)0.3250 (3)0.54552 (19)0.0320 (7)
H21A0.11140.35670.53710.038*
H21B0.27720.27250.49850.038*
C220.4102 (5)0.4243 (3)0.5418 (2)0.0320 (7)
H22A0.40350.46670.59580.038*
C230.3563 (6)0.5096 (4)0.4707 (3)0.0520 (7)
H23A0.46240.56890.46930.078*
H23B0.22190.54450.48100.078*
H23C0.35040.46940.41710.078*
C240.6329 (5)0.3824 (4)0.5333 (3)0.0520 (7)
H24A0.72710.44760.53500.078*
H24B0.64590.34220.48010.078*
H24C0.66800.33070.57960.078*
C25−0.1682 (4)−0.0043 (2)0.85817 (18)0.0228 (5)
H25A−0.0796−0.06490.83710.034*
H25B−0.28090.01040.81760.034*
H25C−0.2257−0.02780.91150.034*
C26−0.2164 (5)−0.0170 (2)1.15541 (19)0.0270 (6)
H26A−0.3263−0.02241.11240.040*
H26B−0.2743−0.03071.21050.040*
H26C−0.1099−0.07391.14460.040*
C270.2764 (4)0.0194 (2)0.72725 (18)0.0234 (5)
H27A0.3139−0.02250.67690.035*
H27B0.2542−0.03430.77300.035*
H27C0.38820.07190.74320.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0336 (11)0.0294 (11)0.0322 (11)0.0148 (9)0.0057 (8)0.0012 (9)
C10.0144 (10)0.0140 (10)0.0201 (12)0.0000 (9)0.0035 (8)0.0013 (10)
C20.0156 (10)0.0227 (12)0.0222 (12)0.0014 (9)0.0048 (9)0.0033 (11)
C30.0207 (12)0.0259 (13)0.0213 (13)0.0073 (10)0.0054 (10)0.0053 (11)
C40.0184 (11)0.0179 (11)0.0192 (12)0.0001 (9)0.0030 (9)0.0024 (10)
C50.0222 (11)0.0170 (11)0.0199 (12)0.0015 (10)0.0064 (9)0.0022 (10)
C60.0264 (13)0.0351 (15)0.0235 (13)0.0030 (12)0.0012 (10)0.0034 (13)
C70.0378 (16)0.0427 (18)0.0226 (14)0.0050 (15)0.0003 (12)0.0029 (14)
C80.0532 (19)0.0413 (18)0.0203 (14)0.0078 (16)0.0044 (13)−0.0032 (14)
C90.0379 (15)0.0256 (13)0.0245 (14)0.0041 (12)0.0090 (11)0.0016 (12)
C100.0232 (12)0.0159 (11)0.0243 (13)−0.0019 (10)0.0065 (10)−0.0012 (10)
C110.0229 (12)0.0188 (12)0.0263 (13)0.0007 (10)0.0079 (10)−0.0013 (11)
C120.0179 (11)0.0167 (11)0.0255 (13)−0.0007 (9)0.0046 (9)−0.0007 (10)
C130.0150 (10)0.0170 (11)0.0196 (11)−0.0003 (9)0.0039 (8)0.0004 (10)
C140.0149 (10)0.0144 (10)0.0199 (12)−0.0024 (9)0.0037 (8)0.0015 (10)
C150.0188 (11)0.0236 (13)0.0244 (13)0.0078 (10)0.0029 (9)0.0017 (11)
C160.0187 (11)0.0242 (12)0.0229 (13)0.0020 (10)0.0019 (9)0.0041 (11)
C170.0138 (10)0.0163 (11)0.0228 (12)−0.0024 (9)0.0025 (9)0.0011 (10)
C180.0185 (11)0.0193 (12)0.0212 (12)−0.0025 (9)0.0036 (9)−0.0020 (10)
C190.0213 (12)0.0304 (14)0.0181 (12)0.0022 (11)0.0003 (10)0.0009 (11)
C200.0245 (12)0.0232 (13)0.0187 (12)0.0020 (10)0.0018 (9)0.0025 (11)
C210.0226 (13)0.0477 (18)0.0258 (15)0.0027 (13)0.0029 (11)0.0120 (14)
C220.0381 (16)0.0290 (14)0.0294 (16)0.0061 (13)0.0145 (13)0.0078 (13)
C230.0340 (11)0.0552 (16)0.0672 (17)0.0041 (11)0.0088 (11)0.0357 (15)
C240.0340 (11)0.0552 (16)0.0672 (17)0.0041 (11)0.0088 (11)0.0357 (15)
C250.0240 (12)0.0151 (11)0.0297 (14)−0.0007 (10)0.0080 (10)0.0009 (11)
C260.0386 (15)0.0168 (12)0.0260 (14)−0.0028 (11)0.0102 (12)0.0037 (11)
C270.0260 (12)0.0212 (12)0.0232 (13)0.0030 (10)0.0065 (10)0.0006 (11)

Geometric parameters (Å, °)

O1—C121.215 (3)C15—H15A0.9700
C1—C21.526 (3)C15—H15B0.9700
C1—C251.534 (3)C16—C171.551 (3)
C1—C171.553 (3)C16—H16A0.9700
C1—C141.554 (3)C16—H16B0.9700
C2—C31.535 (3)C17—C181.537 (3)
C2—H2A0.9700C17—H17A0.9800
C2—H2B0.9700C18—C271.521 (4)
C3—C41.537 (3)C18—C191.538 (4)
C3—H3A0.9700C18—H18A0.9800
C3—H3B0.9700C19—C201.528 (4)
C4—C131.547 (3)C19—H19A0.9700
C4—C51.558 (3)C19—H19B0.9700
C4—H4A0.9800C20—C211.519 (4)
C5—C101.519 (3)C20—H20A0.9700
C5—C261.541 (4)C20—H20B0.9700
C5—C61.550 (4)C21—C221.524 (5)
C6—C71.531 (4)C21—H21A0.9700
C6—H6A0.9700C21—H21B0.9700
C6—H6B0.9700C22—C241.502 (4)
C7—C81.527 (5)C22—C231.518 (5)
C7—H7A0.9700C22—H22A0.9800
C7—H7B0.9700C23—H23A0.9600
C8—C91.516 (5)C23—H23B0.9600
C8—H8A0.9700C23—H23C0.9600
C8—H8B0.9700C24—H24A0.9600
C9—C101.513 (4)C24—H24B0.9600
C9—H9A0.9700C24—H24C0.9600
C9—H9B0.9700C25—H25A0.9600
C10—C111.344 (4)C25—H25B0.9600
C11—C121.457 (4)C25—H25C0.9600
C11—H11A0.9300C26—H26A0.9600
C12—C131.528 (3)C26—H26B0.9600
C13—C141.532 (3)C26—H26C0.9600
C13—H13A0.9800C27—H27A0.9600
C14—C151.530 (4)C27—H27B0.9600
C14—H14A0.9800C27—H27C0.9600
C15—C161.545 (3)
C2—C1—C25111.2 (2)C16—C15—H15A111.0
C2—C1—C17115.98 (18)C14—C15—H15B111.0
C25—C1—C17110.3 (2)C16—C15—H15B111.0
C2—C1—C14106.4 (2)H15A—C15—H15B109.0
C25—C1—C14111.92 (18)C15—C16—C17107.5 (2)
C17—C1—C14100.51 (18)C15—C16—H16A110.2
C1—C2—C3111.90 (19)C17—C16—H16A110.2
C1—C2—H2A109.2C15—C16—H16B110.2
C3—C2—H2A109.2C17—C16—H16B110.2
C1—C2—H2B109.2H16A—C16—H16B108.5
C3—C2—H2B109.2C18—C17—C16111.0 (2)
H2A—C2—H2B107.9C18—C17—C1119.3 (2)
C2—C3—C4113.4 (2)C16—C17—C1103.87 (18)
C2—C3—H3A108.9C18—C17—H17A107.4
C4—C3—H3A108.9C16—C17—H17A107.4
C2—C3—H3B108.9C1—C17—H17A107.4
C4—C3—H3B108.9C27—C18—C17114.0 (2)
H3A—C3—H3B107.7C27—C18—C19110.3 (2)
C3—C4—C13111.1 (2)C17—C18—C19111.7 (2)
C3—C4—C5112.6 (2)C27—C18—H18A106.8
C13—C4—C5113.32 (19)C17—C18—H18A106.8
C3—C4—H4A106.4C19—C18—H18A106.8
C13—C4—H4A106.4C20—C19—C18116.3 (2)
C5—C4—H4A106.4C20—C19—H19A108.2
C10—C5—C26107.6 (2)C18—C19—H19A108.2
C10—C5—C6109.0 (2)C20—C19—H19B108.2
C26—C5—C6110.3 (2)C18—C19—H19B108.2
C10—C5—C4110.0 (2)H19A—C19—H19B107.4
C26—C5—C4111.9 (2)C21—C20—C19111.8 (2)
C6—C5—C4108.0 (2)C21—C20—H20A109.3
C7—C6—C5114.4 (2)C19—C20—H20A109.3
C7—C6—H6A108.7C21—C20—H20B109.3
C5—C6—H6A108.7C19—C20—H20B109.3
C7—C6—H6B108.7H20A—C20—H20B107.9
C5—C6—H6B108.7C20—C21—C22115.2 (3)
H6A—C6—H6B107.6C20—C21—H21A108.5
C8—C7—C6109.9 (3)C22—C21—H21A108.5
C8—C7—H7A109.7C20—C21—H21B108.5
C6—C7—H7A109.7C22—C21—H21B108.5
C8—C7—H7B109.7H21A—C21—H21B107.5
C6—C7—H7B109.7C24—C22—C23109.8 (3)
H7A—C7—H7B108.2C24—C22—C21112.6 (3)
C9—C8—C7109.8 (3)C23—C22—C21112.2 (3)
C9—C8—H8A109.7C24—C22—H22A107.3
C7—C8—H8A109.7C23—C22—H22A107.3
C9—C8—H8B109.7C21—C22—H22A107.3
C7—C8—H8B109.7C22—C23—H23A109.5
H8A—C8—H8B108.2C22—C23—H23B109.5
C10—C9—C8112.7 (2)H23A—C23—H23B109.5
C10—C9—H9A109.0C22—C23—H23C109.5
C8—C9—H9A109.0H23A—C23—H23C109.5
C10—C9—H9B109.0H23B—C23—H23C109.5
C8—C9—H9B109.0C22—C24—H24A109.5
H9A—C9—H9B107.8C22—C24—H24B109.5
C11—C10—C9120.3 (2)H24A—C24—H24B109.5
C11—C10—C5122.7 (2)C22—C24—H24C109.5
C9—C10—C5117.0 (2)H24A—C24—H24C109.5
C10—C11—C12124.6 (2)H24B—C24—H24C109.5
C10—C11—H11A117.7C1—C25—H25A109.5
C12—C11—H11A117.7C1—C25—H25B109.5
O1—C12—C11120.5 (2)H25A—C25—H25B109.5
O1—C12—C13123.0 (2)C1—C25—H25C109.5
C11—C12—C13116.5 (2)H25A—C25—H25C109.5
C12—C13—C14113.0 (2)H25B—C25—H25C109.5
C12—C13—C4109.7 (2)C5—C26—H26A109.5
C14—C13—C4109.24 (18)C5—C26—H26B109.5
C12—C13—H13A108.3H26A—C26—H26B109.5
C14—C13—H13A108.3C5—C26—H26C109.5
C4—C13—H13A108.3H26A—C26—H26C109.5
C15—C14—C13120.13 (19)H26B—C26—H26C109.5
C15—C14—C1104.36 (19)C18—C27—H27A109.5
C13—C14—C1113.01 (19)C18—C27—H27B109.5
C15—C14—H14A106.1H27A—C27—H27B109.5
C13—C14—H14A106.1C18—C27—H27C109.5
C1—C14—H14A106.1H27A—C27—H27C109.5
C14—C15—C16103.77 (19)H27B—C27—H27C109.5
C14—C15—H15A111.0
C25—C1—C2—C3−64.6 (3)C5—C4—C13—C1255.4 (3)
C17—C1—C2—C3168.2 (2)C3—C4—C13—C14−52.3 (3)
C14—C1—C2—C357.4 (3)C5—C4—C13—C14179.8 (2)
C1—C2—C3—C4−55.3 (3)C12—C13—C14—C15−53.9 (3)
C2—C3—C4—C1351.4 (3)C4—C13—C14—C15−176.4 (2)
C2—C3—C4—C5179.7 (2)C12—C13—C14—C1−177.8 (2)
C3—C4—C5—C10−173.8 (2)C4—C13—C14—C159.7 (3)
C13—C4—C5—C10−46.6 (3)C2—C1—C14—C15166.22 (19)
C3—C4—C5—C26−54.2 (3)C25—C1—C14—C15−72.2 (2)
C13—C4—C5—C2672.9 (3)C17—C1—C14—C1544.9 (2)
C3—C4—C5—C667.4 (3)C2—C1—C14—C13−61.6 (2)
C13—C4—C5—C6−165.5 (2)C25—C1—C14—C1360.0 (3)
C10—C5—C6—C749.0 (3)C17—C1—C14—C13177.14 (19)
C26—C5—C6—C7−68.9 (3)C13—C14—C15—C16−161.7 (2)
C4—C5—C6—C7168.5 (3)C1—C14—C15—C16−33.7 (2)
C5—C6—C7—C8−57.5 (4)C14—C15—C16—C179.3 (3)
C6—C7—C8—C958.3 (3)C15—C16—C17—C18147.7 (2)
C7—C8—C9—C10−54.5 (3)C15—C16—C17—C118.4 (3)
C8—C9—C10—C11−131.4 (3)C2—C1—C17—C1883.6 (3)
C8—C9—C10—C549.8 (3)C25—C1—C17—C18−43.9 (3)
C26—C5—C10—C11−104.0 (3)C14—C1—C17—C18−162.2 (2)
C6—C5—C10—C11136.3 (3)C2—C1—C17—C16−152.2 (2)
C4—C5—C10—C1118.1 (3)C25—C1—C17—C1680.2 (2)
C26—C5—C10—C974.6 (3)C14—C1—C17—C16−38.0 (2)
C6—C5—C10—C9−45.0 (3)C16—C17—C18—C27−179.6 (2)
C4—C5—C10—C9−163.2 (2)C1—C17—C18—C27−59.0 (3)
C9—C10—C11—C12−177.1 (3)C16—C17—C18—C1954.5 (3)
C5—C10—C11—C121.5 (4)C1—C17—C18—C19175.1 (2)
C10—C11—C12—O1−175.3 (3)C27—C18—C19—C20−65.8 (3)
C10—C11—C12—C137.4 (4)C17—C18—C19—C2062.2 (3)
O1—C12—C13—C1425.7 (3)C18—C19—C20—C21−175.9 (2)
C11—C12—C13—C14−157.1 (2)C19—C20—C21—C22179.7 (2)
O1—C12—C13—C4147.9 (2)C20—C21—C22—C2471.8 (4)
C11—C12—C13—C4−34.9 (3)C20—C21—C22—C23−163.7 (3)
C3—C4—C13—C12−176.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2558).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dauben, W. G. & Takemura, K. H. (1953). J. Am. Chem. Soc.75, 6302–6304.
  • Drach, S. V., Litvinovskaya, R. P. & Kripach, V. A. (2000). Chem. Heterocycl. Compd, 36, 233–255.
  • Grover, V. K., Babu, R. & Bedi, S. P. S. (2007). Indian J. Anaesth.51, 389–393.
  • Khan, S. A. & Yusuf, M. (2009). Eur. J. Med. Chem.44, 2597–2600. [PubMed]
  • Ruiz, H. J. (1958). Chem. Abstr.52, 10126a.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography