PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1562.
Published online 2010 June 5. doi:  10.1107/S1600536810020933
PMCID: PMC3007017

N-[(E)-4-Chloro­benzyl­idene]-2,3-dimethyl­aniline

Abstract

In the title compound, C15H14ClN, the conformation about the C=N bond is trans and the dihedral angle between the aromatic rings is 51.48 (4)°. In the crystal, some very weak C—H(...)π inter­actions may help to establish the packing.

Related literature

For a related structure and background to Schiff bases, see: Tariq et al. (2010 [triangle]). For related structures with different substituents at the N-bonded ring, see: Bürgi et al. (1968 [triangle]); Kazak et al. (2004 [triangle]); Ojala et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1562-scheme1.jpg

Experimental

Crystal data

  • C15H14ClN
  • M r = 243.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1562-efi1.jpg
  • a = 12.8981 (4) Å
  • b = 7.7999 (2) Å
  • c = 15.0449 (5) Å
  • β = 119.315 (2)°
  • V = 1319.75 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 296 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.939, T max = 0.950
  • 10119 measured reflections
  • 2378 independent reflections
  • 1722 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.05
  • 2378 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020933/hb5479sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020933/hb5479Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha.

supplementary crystallographic information

Comment

In continuation to synthesize various Schiff bases (Tariq et al., 2010) of 2,3-dimethylaniline, the title compound (I, Fig. 1) is being reported.

The crystal structure of p-chlorobenzylideneaniline (Bürgi, et al., 1968), p-cyano-N-(p-chlorobenzylidene)aniline (Ojala et al., 2001) and 4-((4-Chlorobenzylidene)amino)phenol (Kazak et al., 2004) have been published which contain the chloro group at para position. The title compound differs from these due to substitutions at the aniline.

In (I), the 2,3-dimethylanilinic group A (C1—C8/N1) and the p-chlorobenzaldehyde B (C9—C15/CL1) are planar with maximum r. m. s. deviations of 0.0121 and 0.0071 Å, respectively. The dihedral angle between A/B is 51.48 (4)°. The molecules are essentially monomer with no appreciable intra-molecular H-bonding. The phenyl ring of 2,3-dimethylaniline has longer bond length [1.375 (3)–1.399 (2) Å] as compared to the phenyl ring of p-chlorobenzaldehyde [1.364 (4)–1.386 (3) Å]. The observed value of C═N bond is 1.264 (3) Å. All these bond lengths are compareable with 2,3-dimethyl-N-[(E)-(4-nitrophenyl)methylidene]aniline (Tariq et al., 2010). The molecules are stabilized due to C—H···π interactions (Table 1). The H-atoms of the methyl at ortho position are disordered over two set of sites with occupancy ratio 0.60 (3):0.40 (3).

Experimental

Equimolar quantities of 2,3-dimethylaniline and 4-chlorobenzaldehyde were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which affoarded colourless prisms of (I) after 48 h.

Refinement

All H-atoms were positioned geometrically (C–H = 0.93, 0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and x = 1.5 for methyl H-atoms. From the observation of difference Fourier map, it was concluded that H-atoms of one of the ortho methyl are disordered.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C15H14ClNF(000) = 512
Mr = 243.72Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1467 reflections
a = 12.8981 (4) Åθ = 2.3–25.3°
b = 7.7999 (2) ŵ = 0.27 mm1
c = 15.0449 (5) ÅT = 296 K
β = 119.315 (2)°Prism, colourless
V = 1319.75 (7) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2378 independent reflections
Radiation source: fine-focus sealed tube1722 reflections with I > 2σ(I)
graphiteRint = 0.026
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.7°
ω scansh = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −8→9
Tmin = 0.939, Tmax = 0.950l = −18→18
10119 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2848P] where P = (Fo2 + 2Fc2)/3
2378 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.03504 (6)0.38426 (9)−0.38533 (4)0.1078 (3)
N10.47950 (12)0.29383 (18)0.09822 (10)0.0549 (5)
C10.55065 (14)0.2685 (2)0.20499 (12)0.0492 (5)
C20.66149 (14)0.1905 (2)0.24128 (12)0.0502 (5)
C30.73394 (15)0.1691 (2)0.34649 (13)0.0550 (6)
C40.69544 (17)0.2286 (3)0.41183 (14)0.0673 (7)
C50.58704 (18)0.3083 (3)0.37546 (14)0.0762 (8)
C60.51425 (17)0.3277 (3)0.27191 (14)0.0654 (6)
C70.70003 (18)0.1280 (3)0.16739 (15)0.0750 (8)
C80.85264 (17)0.0805 (3)0.39021 (15)0.0821 (8)
C90.36888 (15)0.2672 (2)0.05682 (13)0.0568 (6)
C100.28740 (15)0.2988 (2)−0.05166 (13)0.0555 (6)
C110.32577 (17)0.3762 (2)−0.11338 (14)0.0642 (7)
C120.24792 (19)0.4016 (3)−0.21581 (15)0.0729 (7)
C130.13238 (18)0.3509 (3)−0.25623 (14)0.0691 (7)
C140.09207 (17)0.2742 (3)−0.19726 (16)0.0848 (9)
C150.16989 (16)0.2490 (3)−0.09440 (15)0.0753 (8)
H40.743680.214370.481750.0807*
H50.562970.349070.420590.0914*
H60.440600.380610.247050.0784*
H7A0.685810.006940.156990.1125*0.60 (3)
H7B0.783300.150450.194460.1125*0.60 (3)
H7C0.655590.186720.103560.1125*0.60 (3)
H8A0.885860.068550.462600.1231*
H8B0.905400.147230.376040.1231*
H8C0.84233−0.030920.359840.1231*
H90.337820.225660.096880.0681*
H110.404480.41135−0.085610.0771*
H120.274160.45295−0.257020.0875*
H140.013230.23925−0.225860.1018*
H150.142740.19794−0.053750.0904*
H7D0.632600.082660.107810.1125*0.40 (3)
H7E0.758850.039790.198980.1125*0.40 (3)
H7F0.733260.221660.148220.1125*0.40 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1029 (5)0.1121 (5)0.0596 (4)0.0316 (4)0.0019 (3)−0.0013 (3)
N10.0515 (8)0.0532 (9)0.0526 (8)0.0013 (7)0.0197 (7)0.0026 (7)
C10.0506 (9)0.0446 (9)0.0496 (9)−0.0022 (7)0.0223 (8)−0.0008 (7)
C20.0496 (9)0.0472 (9)0.0521 (9)−0.0034 (7)0.0237 (8)−0.0011 (8)
C30.0507 (10)0.0530 (10)0.0547 (10)−0.0025 (8)0.0208 (8)0.0002 (8)
C40.0662 (12)0.0780 (14)0.0478 (10)−0.0004 (10)0.0203 (9)−0.0031 (10)
C50.0761 (14)0.0942 (16)0.0587 (12)0.0091 (12)0.0333 (10)−0.0150 (11)
C60.0565 (10)0.0693 (12)0.0634 (11)0.0110 (9)0.0240 (9)−0.0071 (10)
C70.0641 (12)0.1002 (16)0.0640 (12)0.0125 (11)0.0339 (10)−0.0014 (11)
C80.0608 (12)0.0989 (17)0.0680 (12)0.0163 (11)0.0172 (10)0.0052 (12)
C90.0553 (11)0.0592 (11)0.0562 (10)−0.0001 (8)0.0276 (9)0.0001 (9)
C100.0517 (10)0.0541 (10)0.0549 (10)0.0030 (8)0.0215 (8)−0.0039 (8)
C110.0590 (11)0.0613 (12)0.0598 (11)−0.0094 (9)0.0193 (9)0.0031 (9)
C120.0848 (14)0.0598 (12)0.0607 (11)−0.0062 (10)0.0253 (11)0.0057 (9)
C130.0657 (12)0.0668 (13)0.0553 (11)0.0151 (10)0.0145 (10)−0.0052 (10)
C140.0459 (10)0.122 (2)0.0722 (14)0.0036 (12)0.0178 (10)−0.0179 (14)
C150.0529 (11)0.1084 (18)0.0644 (12)−0.0042 (11)0.0285 (10)−0.0059 (12)

Geometric parameters (Å, °)

Cl1—C131.740 (2)C4—H40.9300
N1—C11.421 (2)C5—H50.9300
N1—C91.264 (3)C6—H60.9300
C1—C21.396 (3)C7—H7A0.9600
C1—C61.382 (3)C7—H7B0.9600
C2—C31.399 (2)C7—H7C0.9600
C2—C71.504 (3)C7—H7D0.9600
C3—C41.381 (3)C7—H7E0.9600
C3—C81.506 (3)C7—H7F0.9600
C4—C51.375 (3)C8—H8A0.9600
C5—C61.378 (3)C8—H8B0.9600
C9—C101.466 (2)C8—H8C0.9600
C10—C111.386 (3)C9—H90.9300
C10—C151.381 (3)C11—H110.9300
C11—C121.381 (3)C12—H120.9300
C12—C131.364 (4)C14—H140.9300
C13—C141.366 (3)C15—H150.9300
C14—C151.386 (3)
C1—N1—C9118.88 (16)C5—C6—H6120.00
N1—C1—C2118.29 (16)C2—C7—H7A109.00
N1—C1—C6121.03 (17)C2—C7—H7B109.00
C2—C1—C6120.59 (16)C2—C7—H7C109.00
C1—C2—C3118.90 (17)C2—C7—H7D109.00
C1—C2—C7119.88 (15)C2—C7—H7E109.00
C3—C2—C7121.21 (18)C2—C7—H7F109.00
C2—C3—C4119.44 (18)H7A—C7—H7B109.00
C2—C3—C8121.46 (17)H7A—C7—H7C109.00
C4—C3—C8119.10 (16)H7B—C7—H7C109.00
C3—C4—C5121.24 (17)H7D—C7—H7E109.00
C4—C5—C6119.8 (2)H7D—C7—H7F109.00
C1—C6—C5120.0 (2)H7E—C7—H7F109.00
N1—C9—C10122.83 (18)C3—C8—H8A109.00
C9—C10—C11121.50 (19)C3—C8—H8B109.00
C9—C10—C15119.75 (18)C3—C8—H8C109.00
C11—C10—C15118.75 (17)H8A—C8—H8B109.00
C10—C11—C12120.5 (2)H8A—C8—H8C109.00
C11—C12—C13119.7 (2)H8B—C8—H8C109.00
Cl1—C13—C12119.21 (17)N1—C9—H9119.00
Cl1—C13—C14119.62 (18)C10—C9—H9119.00
C12—C13—C14121.17 (19)C10—C11—H11120.00
C13—C14—C15119.3 (2)C12—C11—H11120.00
C10—C15—C14120.7 (2)C11—C12—H12120.00
C3—C4—H4119.00C13—C12—H12120.00
C5—C4—H4119.00C13—C14—H14120.00
C4—C5—H5120.00C15—C14—H14120.00
C6—C5—H5120.00C10—C15—H15120.00
C1—C6—H6120.00C14—C15—H15120.00
C9—N1—C1—C2139.41 (17)C3—C4—C5—C60.9 (4)
C9—N1—C1—C6−44.1 (2)C4—C5—C6—C1−0.6 (4)
C1—N1—C9—C10176.57 (15)N1—C9—C10—C11−6.5 (3)
N1—C1—C2—C3178.22 (15)N1—C9—C10—C15172.75 (18)
N1—C1—C2—C7−3.0 (2)C9—C10—C11—C12178.72 (18)
C6—C1—C2—C31.7 (3)C15—C10—C11—C12−0.5 (3)
C6—C1—C2—C7−179.55 (19)C9—C10—C15—C14−178.54 (19)
N1—C1—C6—C5−177.17 (19)C11—C10—C15—C140.7 (3)
C2—C1—C6—C5−0.7 (3)C10—C11—C12—C130.4 (3)
C1—C2—C3—C4−1.4 (3)C11—C12—C13—Cl1179.79 (17)
C1—C2—C3—C8177.88 (17)C11—C12—C13—C14−0.4 (4)
C7—C2—C3—C4179.87 (19)Cl1—C13—C14—C15−179.61 (18)
C7—C2—C3—C8−0.9 (3)C12—C13—C14—C150.6 (4)
C2—C3—C4—C50.1 (3)C13—C14—C15—C10−0.7 (3)
C8—C3—C4—C5−179.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.932.993.649 (2)129
C7—H7A···Cg2ii0.962.933.757 (3)145
C12—H12···Cg1iii0.932.963.793 (3)150
C7—H7E···Cg2ii0.963.003.757 (3)137

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5479).

References

  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bürgi, H. B., Dunitz, J. D. & Züst, C. (1968). Acta Cryst. B24, 463–464.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kazak, C., Aygün, M., Turgut, G., Odabaşoğlu, M., Büyükgüngör, O. & Kahveci, N. (2004). Acta Cryst. E60, o252–o253.
  • Ojala, C. R., Ojala, W. H., Gleason, W. B. & Britton, D. (2001). J. Chem. Crystallogr.31, 377–386.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tariq, M. I., Ahmad, S., Tahir, M. N., Sarfaraz, M. & Hussain, I. (2010). Acta Cryst. E66, o1561. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography