PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1596.
Published online 2010 June 5. doi:  10.1107/S1600536810021185
PMCID: PMC3007016

2-Chloro-N-(4-sulfamoylphen­yl)acetamide

Abstract

In the title compound, C8H9ClN2O3S, the benzene ring makes a dihedral angle of 4.1 (9)° with the amido –NHCO– plane including the major occupancy component of the carbonyl O atom [19 (4)° for the minor component]. An intra­molecular C—H(...)O inter­action occurs. The O atom of the carbonyl group is disordered over two positions with site-occupancy factors of 0.67 (11) and 0.33 (11). Inter­molecular N—H(...)O hydrogen bonds help to stabilize the crystal structure.

Related literature

For the anti­bacterial activity of sulfonamides and their derivatives and for their pharmacological applications, see: Köhler et al. (2007 [triangle]); Ohradanova et al. (2007 [triangle]); Supuran (2008 [triangle]); Türkmen et al. (2005 [triangle]); Thiry et al. (2008 [triangle]). For comparative bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1596-scheme1.jpg

Experimental

Crystal data

  • C8H9ClN2O3S
  • M r = 248.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1596-efi1.jpg
  • a = 4.7870 (2) Å
  • b = 14.1868 (9) Å
  • c = 16.0158 (9) Å
  • β = 90.907 (4)°
  • V = 1087.53 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 296 K
  • 0.72 × 0.50 × 0.35 mm

Data collection

  • Stoe IPDS2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.734, T max = 0.830
  • 12474 measured reflections
  • 2193 independent reflections
  • 2021 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.129
  • S = 1.05
  • 2193 reflections
  • 154 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021185/xu2770sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021185/xu2770Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Sulfonamide is the basis of several groups of drugs. The original antibacterial sulfonamides (sometimes called simply sulfa drugs) are synthetic antimicrobial agents that contain the sulfonamide group. Some sulfonamides are also devoid of antibacterial activity, e.g., the anticonvulsant sultiame. The sulfonylureas and thiazide diuretics are newer drug groups based on the antibacterial sulfonamides. Sulfanilamide is a sulfonamide antibacterial.

Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in bacteria, archaea, and eukaryotes, catalyzing a critically important physiologic reaction, hydration of carbon dioxide to bicarbonate and protons (Ohradanova et al., 2007; Supuran, 2008). These enzymes are inhibited by several classes of compounds, such as sulfonamides, sulfamates and sulfamides some of which have pharmacologic applications for the treatment of glaucoma obesity cancer epilepsy and other neurological disorders or as diuretics (Supuran, 2008; Köhler et al., 2007; Türkmen et al., 2005; Thiry et al., 2008). In view of these importance, we have undertaken the crystal structure determination of the compound 2-chloro-N-(4-sulfamoylphenyl)acetamide and the results are presented here.

In the molecular structure of the title compound, (I), (Fig. 1), the S=O distances are 1.432 (2) and 1.433 (2) Å, and the angle of O=S=O is 118.38 (14)°. All the bond lengths and the bond angles are within the normal range (Allen et al., 1987). The planes of the benzene ring and the O=S=O group make a dihedral angle of 126.81 (11)°. The C4—N2—C7—C8, N2—C7—C8—Cl1 and C4—N2—C7—O3B torsion angles in the 2-chloroacetamide part of the molecule are -173.3 (3), -157.8 (2) and -4.8 (14)°, respectively.

In the crystal structure, symmetry-related molecules are interconected by intermolecular N—H···O hydrogen bonds (Table 1) to form a three-dimensional network (Fig.2).

Experimental

Sulfanilamide (1.00 g, 0.0058 mol) and N-ethylmaleimide (NEM) (0.80 g, 0.007 mol) were stirred in THF (200 ml) until most of the starting material had dissolved. 2-Chloroethanoylchloride (0.784 g, 0.007 mol) in THF was slowly added to the reaction mixture. The reaction was stirred at 258 K for 4 h under anhydrous conditions. After warming to room temperature the white precipitate of NEM/HCl salt filtered off. The THF was removed in vacuo and the resulting white solid dissolved in ethyl acetate. The organic extract was washed with 3M hydrochloric acid (20 ml) then with saturated sodium bicarbonate solution (20 ml) and finally with brine. Drying over magnesium sulfate and evaporation yielded a white solid which was recrystallized from water to give the title compound (yield: 70%, m.p: 492–495 K).

Refinement

The NH2 H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H = 0.86 (2) Å; their temperature factors were freely refined. The rest H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.97 (CH2) Å and N—H = 0.86 (NH) \%A, and with Ueq = 1.2Ueq(C, N). The O atom of the carbonyl group is disorder over two sets of sites [occupancy ratio = 0.67 (11):0.33 (11)].

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. Only the major disordered component is shown.
Fig. 2.
The crystal packing and hydrogen bonding interactions of (I), viewed down the a axis. All hydrogen atoms not involved in hydrogen bonding and the minor disorder component have been omitted for clarity.

Crystal data

C8H9ClN2O3SF(000) = 512
Mr = 248.69Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27592 reflections
a = 4.7870 (2) Åθ = 1.9–28.1°
b = 14.1868 (9) ŵ = 0.53 mm1
c = 16.0158 (9) ÅT = 296 K
β = 90.907 (4)°Prism, colourless
V = 1087.53 (10) Å30.72 × 0.50 × 0.35 mm
Z = 4

Data collection

Stoe IPDS2 diffractometer2193 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2021 reflections with I > 2σ(I)
plane graphiteRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = −6→5
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)k = −17→17
Tmin = 0.734, Tmax = 0.830l = −20→20
12474 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0576P)2 + 1.1572P] where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.56 e Å3
2 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.2379 (3)0.08886 (7)0.56592 (6)0.0959 (5)
S10.41100 (13)0.66791 (5)0.26923 (4)0.0393 (2)
O10.7050 (4)0.68487 (16)0.27785 (16)0.0597 (7)
O20.2847 (4)0.67525 (14)0.18777 (12)0.0495 (6)
O3B0.500 (4)0.2630 (11)0.5011 (18)0.065 (3)0.67 (11)
N10.2607 (5)0.74276 (17)0.32797 (15)0.0452 (7)
N20.1740 (5)0.28448 (15)0.39800 (13)0.0435 (7)
C10.3465 (5)0.55335 (18)0.30663 (15)0.0386 (7)
C20.1432 (6)0.4980 (2)0.26979 (17)0.0488 (9)
C30.0903 (7)0.40929 (19)0.30111 (19)0.0515 (9)
C40.2414 (5)0.37552 (18)0.36939 (15)0.0392 (7)
C50.4491 (7)0.4307 (2)0.4052 (2)0.0587 (10)
C60.5012 (7)0.5193 (2)0.3732 (2)0.0593 (10)
C70.2930 (7)0.2361 (2)0.46056 (18)0.0534 (10)
C80.1863 (9)0.1357 (2)0.4664 (2)0.0679 (13)
O3A0.40 (2)0.277 (3)0.522 (3)0.078 (14)0.33 (11)
H1A0.087 (4)0.733 (2)0.331 (2)0.050 (9)*
H1B0.342 (7)0.753 (3)0.3734 (15)0.068 (11)*
H2A0.039300.256600.371800.0520*
H3−0.047500.371900.276300.0620*
H50.553200.408300.450500.0700*
H60.642000.556200.396900.0710*
H8A0.282200.096800.426200.0810*
H8B−0.011600.134500.452400.0810*
H20.041700.520300.223900.0590*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1553 (12)0.0675 (6)0.0641 (6)−0.0342 (7)−0.0249 (6)0.0246 (5)
S10.0328 (3)0.0429 (4)0.0419 (4)−0.0018 (2)−0.0056 (2)0.0102 (3)
O10.0346 (10)0.0627 (13)0.0816 (15)−0.0044 (9)−0.0056 (10)0.0247 (11)
O20.0540 (11)0.0552 (12)0.0390 (10)0.0032 (9)−0.0051 (8)0.0106 (8)
O3B0.083 (6)0.062 (3)0.050 (5)−0.022 (4)−0.027 (4)0.013 (3)
N10.0438 (13)0.0435 (12)0.0480 (13)−0.0004 (10)−0.0117 (11)−0.0003 (10)
N20.0545 (13)0.0377 (11)0.0378 (11)−0.0089 (10)−0.0099 (9)−0.0018 (9)
C10.0396 (13)0.0397 (13)0.0364 (12)−0.0002 (10)−0.0028 (10)0.0032 (10)
C20.0604 (17)0.0414 (14)0.0439 (14)0.0004 (12)−0.0188 (12)−0.0006 (11)
C30.0627 (17)0.0386 (14)0.0524 (16)−0.0055 (12)−0.0239 (13)−0.0039 (12)
C40.0463 (14)0.0371 (12)0.0342 (12)−0.0022 (10)−0.0034 (10)−0.0012 (10)
C50.0675 (19)0.0544 (17)0.0532 (16)−0.0206 (15)−0.0274 (15)0.0182 (14)
C60.0618 (18)0.0562 (17)0.0589 (18)−0.0227 (15)−0.0260 (15)0.0172 (14)
C70.076 (2)0.0426 (15)0.0410 (14)−0.0153 (14)−0.0135 (14)0.0035 (12)
C80.105 (3)0.0449 (16)0.0530 (17)−0.0217 (17)−0.0238 (18)0.0112 (14)
O3A0.14 (4)0.050 (9)0.042 (11)−0.043 (14)−0.044 (16)0.017 (7)

Geometric parameters (Å, °)

Cl1—C81.741 (3)C1—C61.376 (4)
S1—O11.432 (2)C2—C31.380 (4)
S1—O21.433 (2)C3—C41.387 (4)
S1—N11.597 (2)C4—C51.383 (4)
S1—C11.761 (3)C5—C61.382 (4)
O3A—C71.25 (6)C7—C81.517 (4)
O3B—C71.24 (2)C2—H20.9300
N2—C41.410 (3)C3—H30.9300
N2—C71.335 (4)C5—H50.9300
N1—H1A0.85 (2)C6—H60.9300
N1—H1B0.83 (3)C8—H8A0.9700
N2—H2A0.8600C8—H8B0.9700
C1—C21.376 (4)
Cl1···O3B2.966 (18)N2···O2viii3.002 (3)
Cl1···O3A2.87 (5)N1···H3v2.6700
Cl1···C2i3.526 (3)C2···O1ii3.384 (4)
Cl1···H2i3.1200C2···C6ii3.527 (4)
S1···O1ii3.393 (2)C2···Cl1ix3.526 (3)
O1···S1iii3.393 (2)C3···C6ii3.439 (5)
O1···O2iii3.151 (3)C3···C5ii3.529 (5)
O1···N1iii2.886 (3)C5···O3B2.84 (2)
O1···C2iii3.384 (4)C5···O3A2.89 (5)
O1···N2iv3.212 (3)C5···C3iii3.529 (5)
O2···C7iv3.260 (4)C6···O3Avi3.37 (5)
O2···C8v3.364 (4)C6···C3iii3.439 (5)
O2···N2v3.002 (3)C6···C2iii3.527 (4)
O2···O1ii3.151 (3)C7···O2vii3.260 (4)
O3A···C52.89 (5)C8···O2viii3.364 (4)
O3A···Cl12.87 (5)C6···H5vi3.0200
O3A···C6vi3.37 (4)C7···H52.7500
O3A···N1vi2.89 (7)H1A···O1ii2.12 (2)
O3B···C52.84 (2)H1B···O3Bvi2.15 (4)
O3B···Cl12.966 (18)H1B···O3Avi2.11 (7)
O3B···N1vi2.95 (3)H2···O22.5600
O1···H62.6600H2···Cl1ix3.1200
O1···H2Aiv2.8900H2A···H8B2.1800
O1···H1Aiii2.12 (2)H2A···H32.2700
O2···H2Av2.1400H2A···O1vii2.8900
O2···H22.5600H2A···O2viii2.1400
O2···H8Bv2.6400H3···N1viii2.6700
O3A···H52.3100H3···H2A2.2700
O3A···H6vi2.7100H5···O3B2.2300
O3A···H1Bvi2.11 (7)H5···C72.7500
O3B···H1Bvi2.15 (4)H5···O3A2.3100
O3B···H52.2300H5···C6vi3.0200
N1···O1ii2.886 (3)H6···O12.6600
N1···O3Bvi2.95 (3)H6···O3Avi2.7100
N1···O3Avi2.89 (7)H8B···H2A2.1800
N2···O1vii3.212 (3)H8B···O2viii2.6400
O1—S1—O2118.38 (14)C1—C6—C5120.6 (3)
O1—S1—N1106.42 (13)O3A—C7—C8122 (2)
O1—S1—C1107.43 (13)O3B—C7—C8121.7 (9)
O2—S1—N1107.48 (12)O3B—C7—N2124.4 (10)
O2—S1—C1107.64 (12)N2—C7—C8112.9 (3)
N1—S1—C1109.28 (12)O3A—C7—N2121 (2)
C4—N2—C7128.2 (2)Cl1—C8—C7111.8 (2)
H1A—N1—H1B115 (3)C1—C2—H2120.00
S1—N1—H1A112 (2)C3—C2—H2120.00
S1—N1—H1B115 (3)C2—C3—H3120.00
C4—N2—H2A116.00C4—C3—H3120.00
C7—N2—H2A116.00C4—C5—H5120.00
S1—C1—C2120.5 (2)C6—C5—H5120.00
S1—C1—C6119.5 (2)C1—C6—H6120.00
C2—C1—C6120.0 (2)C5—C6—H6120.00
C1—C2—C3119.8 (3)Cl1—C8—H8A109.00
C2—C3—C4120.4 (3)Cl1—C8—H8B109.00
C3—C4—C5119.6 (3)C7—C8—H8A109.00
N2—C4—C5123.4 (2)C7—C8—H8B109.00
N2—C4—C3117.0 (2)H8A—C8—H8B108.00
C4—C5—C6119.6 (3)
O1—S1—C1—C2−144.9 (2)S1—C1—C6—C5178.1 (2)
O2—S1—C1—C2−16.4 (2)C2—C1—C6—C5−1.9 (4)
N1—S1—C1—C2100.1 (2)C6—C1—C2—C31.6 (4)
O1—S1—C1—C635.1 (3)C1—C2—C3—C4−0.2 (4)
O2—S1—C1—C6163.6 (2)C2—C3—C4—N2179.6 (3)
N1—S1—C1—C6−79.9 (2)C2—C3—C4—C5−1.1 (4)
C7—N2—C4—C3178.2 (3)N2—C4—C5—C6−179.9 (3)
C7—N2—C4—C5−1.1 (4)C3—C4—C5—C60.8 (4)
C4—N2—C7—O3B−4.8 (14)C4—C5—C6—C10.6 (5)
C4—N2—C7—C8−173.3 (3)O3B—C7—C8—Cl133.4 (14)
S1—C1—C2—C3−178.4 (2)N2—C7—C8—Cl1−157.8 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+1/2; (v) −x, y+1/2, −z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x+1, y−1/2, −z+1/2; (viii) −x, y−1/2, −z+1/2; (ix) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.85 (2)2.12 (2)2.886 (3)151 (3)
N1—H1B···O3Bvi0.83 (3)2.15 (4)2.95 (3)162 (4)
N2—H2A···O2viii0.862.143.002 (3)175
C2—H2···O20.932.562.922 (3)104
C5—H5···O3B0.932.232.84 (2)122

Symmetry codes: (ii) x−1, y, z; (vi) −x+1, −y+1, −z+1; (viii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2770).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Köhler, K., Hillebrecht, A., Wischeler, J. S., Innocenti, A., Heine, A., Supuran, C. T. & Klebe, G. (2007). Angew. Chem. Int. Ed. Engl.46, 7697–7699. [PubMed]
  • Ohradanova, A., Vullo, D., Kopacek, J., Temperini, C., Betakova, T., Pastorekova, S., Pastorek, J. & Supuran, C. T. (2007). Biochem. J.407, 61–67. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Supuran, C. T. (2008). Nat. Rev. Drug Discov.7, 168–181. [PubMed]
  • Thiry, A., Dogné, J. M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des.14, 661–671. [PubMed]
  • Türkmen, H., Durgun, M., Yılmaztekin, S., Emul, M., Innocenti, A., Vullo, D., Scozzafava, A. & Supuran, C. T. (2005). Bioorg. Med. Chem. Lett.15, 367–372. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography