PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1781.
Published online 2010 June 26. doi:  10.1107/S1600536810023676
PMCID: PMC3007014

1-Nitro-4-(2-nitro­prop-1-en­yl)benzene

Abstract

The asymmetric unit of the title compound, C9H8N2O4, contains two crystallographically independent mol­ecules, both of which adopt an E configuration about the C=C bond. In the crystal, the mol­ecules stack into columns along the c axis through π–π inter­actions, with centroid–centroid distances of 3.695 (3) and 3.804 (3) Å. The columns are further connected into a three-dimensional network by C—H(...)O hydrogen bonds.

Related literature

For background to the chemistry of nitro­alkenes, see: Ballini & Petrini (2004 [triangle]); Berner et al. (2002 [triangle]); Ono (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1781-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O4
  • M r = 208.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1781-efi1.jpg
  • a = 13.3621 (11) Å
  • b = 9.7648 (7) Å
  • c = 14.8835 (11) Å
  • β = 91.290 (2)°
  • V = 1941.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.38 × 0.29 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.947, T max = 0.978
  • 18620 measured reflections
  • 4430 independent reflections
  • 1883 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.168
  • S = 1.01
  • 4430 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810023676/rz2463sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023676/rz2463Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr Jianming Gu for the X-ray single crystal analysis. We are also grateful for financial support from the Natural Science Foundation of Zhejiang Province Education Department (No. Y200803565).

supplementary crystallographic information

Comment

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules. Both molecules adopt an E configuration with respect to the C═C double bond. In the crystal packing (Fig. 2), the molecules interact through π···π interactions (centroid-to-centroid distances of 3.695 (3) and 3.804 (3) Å) to form columns along the c axis. The column are further connected into a three-dimensional network by C—H···O hydrogen bonds (Table 1).

Experimental

To a solution of 3-nitro-benzaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc (10:1 v/v) solution.

Refinement

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound showing the intermolecular hydrogen interaction dash lines. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C9H8N2O4F(000) = 864
Mr = 208.17Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9423 reflections
a = 13.3621 (11) Åθ = 3.0–27.5°
b = 9.7648 (7) ŵ = 0.11 mm1
c = 14.8835 (11) ÅT = 296 K
β = 91.290 (2)°Chunk, yellow
V = 1941.5 (3) Å30.38 × 0.29 × 0.20 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer4430 independent reflections
Radiation source: rolling anode1883 reflections with I > 2σ(I)
graphiteRint = 0.042
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −17→17
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −12→11
Tmin = 0.947, Tmax = 0.978l = −19→19
18620 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4203P] where P = (Fo2 + 2Fc2)/3
4430 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1A0.91640 (18)0.3305 (3)0.05652 (17)0.0806 (6)
O2A0.98875 (16)0.3688 (2)0.10125 (17)0.1116 (8)
O1A0.90989 (18)0.2158 (2)0.02430 (17)0.1120 (8)
C4A0.77860 (18)0.6710 (2)0.05586 (16)0.0625 (6)
O1B0.96098 (19)0.2340 (2)0.31850 (17)0.1199 (8)
N1B0.8836 (2)0.2846 (3)0.29171 (18)0.0892 (7)
C3A0.84789 (17)0.5546 (3)0.06249 (16)0.0678 (7)
H30.91180.57440.08490.081*
C8B0.59839 (19)0.7663 (3)0.31450 (16)0.0679 (7)
C2A0.83112 (17)0.4254 (3)0.04069 (16)0.0658 (6)
C2B0.86722 (19)0.4327 (2)0.30718 (17)0.0673 (6)
C3B0.77664 (18)0.4791 (2)0.28873 (17)0.0692 (7)
H120.73040.41420.26860.083*
C9A0.67661 (18)0.6603 (2)0.06964 (16)0.0650 (6)
H90.64800.57530.08090.078*
O2B0.8201 (2)0.2192 (2)0.2511 (2)0.1380 (11)
C4B0.73898 (18)0.6202 (2)0.29576 (16)0.0617 (6)
C5B0.7965 (2)0.7370 (3)0.28421 (18)0.0723 (7)
H140.86460.72810.27390.087*
C9B0.63788 (18)0.6371 (2)0.31073 (16)0.0654 (6)
H180.59700.56110.31820.078*
C5A0.8177 (2)0.8007 (3)0.04022 (18)0.0761 (7)
H50.88610.81030.03160.091*
C6B0.7547 (2)0.8658 (3)0.28776 (19)0.0815 (8)
H150.79480.94260.27980.098*
N2B0.4902 (2)0.7794 (3)0.32987 (19)0.0929 (8)
N2A0.51053 (19)0.7625 (3)0.08429 (18)0.0910 (7)
C8A0.6181 (2)0.7759 (3)0.06654 (17)0.0702 (7)
O3A0.47832 (17)0.6518 (3)0.0982 (3)0.1743 (15)
O4A0.45844 (19)0.8608 (3)0.0844 (2)0.1402 (10)
O3B0.4434 (2)0.6811 (3)0.3488 (3)0.1726 (14)
C7B0.6543 (2)0.8819 (3)0.30301 (18)0.0791 (8)
H160.62540.96850.30540.095*
C1B0.9567 (2)0.5036 (3)0.3453 (2)0.0955 (9)
H10A1.00440.51760.29890.143*
H10B0.98640.44860.39230.143*
H10C0.93730.59060.36940.143*
C7A0.6564 (2)0.9036 (3)0.05062 (18)0.0830 (8)
H70.61520.98040.04890.100*
C6A0.7576 (2)0.9148 (3)0.0372 (2)0.0894 (9)
H60.78551.00020.02610.107*
C1A0.7418 (2)0.3607 (3)−0.0012 (2)0.0956 (10)
H1A0.69860.4302−0.02610.143*
H1B0.70670.30970.04330.143*
H1C0.76210.3000−0.04820.143*
O4B0.45068 (18)0.8883 (3)0.3199 (2)0.1367 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0647 (15)0.0786 (16)0.0986 (17)0.0075 (12)0.0091 (13)0.0115 (14)
O2A0.0697 (14)0.1051 (16)0.159 (2)0.0148 (12)−0.0217 (14)0.0049 (14)
O1A0.1112 (18)0.0803 (14)0.144 (2)0.0245 (12)0.0023 (15)−0.0107 (14)
C4A0.0590 (15)0.0640 (14)0.0643 (15)−0.0041 (12)−0.0004 (11)−0.0001 (12)
O1B0.1121 (19)0.1086 (17)0.139 (2)0.0557 (14)−0.0007 (15)−0.0028 (14)
N1B0.0780 (18)0.0757 (16)0.115 (2)0.0129 (14)0.0161 (15)−0.0010 (14)
C3A0.0511 (14)0.0744 (17)0.0777 (16)−0.0019 (12)0.0001 (12)0.0052 (13)
C8B0.0631 (16)0.0704 (16)0.0707 (16)0.0113 (13)0.0084 (12)0.0049 (13)
C2A0.0531 (14)0.0678 (15)0.0768 (16)0.0032 (12)0.0079 (12)0.0024 (13)
C2B0.0622 (16)0.0583 (14)0.0819 (17)0.0033 (12)0.0101 (13)0.0052 (12)
C3B0.0590 (16)0.0599 (14)0.0889 (18)−0.0035 (12)0.0080 (13)0.0000 (13)
C9A0.0589 (16)0.0623 (14)0.0737 (16)−0.0003 (12)−0.0039 (12)0.0008 (12)
O2B0.1084 (19)0.0716 (14)0.233 (3)0.0038 (13)−0.014 (2)−0.0303 (16)
C4B0.0582 (15)0.0591 (14)0.0679 (15)0.0006 (11)0.0022 (11)0.0044 (11)
C5B0.0627 (16)0.0686 (17)0.0855 (18)−0.0032 (13)0.0017 (13)0.0030 (13)
C9B0.0623 (16)0.0596 (14)0.0746 (16)0.0002 (12)0.0100 (12)0.0079 (12)
C5A0.0719 (17)0.0695 (17)0.0874 (18)−0.0088 (14)0.0090 (14)0.0009 (14)
C6B0.085 (2)0.0610 (16)0.099 (2)−0.0130 (14)0.0015 (16)0.0029 (14)
N2B0.0783 (18)0.0790 (17)0.122 (2)0.0212 (15)0.0218 (15)0.0153 (15)
N2A0.0680 (17)0.0898 (18)0.115 (2)0.0143 (15)−0.0088 (14)0.0025 (15)
C8A0.0630 (17)0.0761 (17)0.0713 (16)0.0042 (13)−0.0036 (13)−0.0032 (13)
O3A0.0603 (15)0.124 (2)0.339 (5)0.0037 (15)0.001 (2)0.063 (3)
O4A0.0951 (17)0.1155 (19)0.211 (3)0.0362 (15)0.0182 (17)−0.0182 (18)
O3B0.0914 (19)0.124 (2)0.306 (4)0.0254 (16)0.081 (2)0.067 (2)
C7B0.091 (2)0.0597 (15)0.0869 (19)0.0108 (15)0.0042 (16)0.0013 (13)
C1B0.0658 (18)0.090 (2)0.130 (3)−0.0040 (15)−0.0178 (17)0.0151 (18)
C7A0.095 (2)0.0683 (18)0.0855 (19)0.0133 (16)0.0029 (16)0.0008 (14)
C6A0.104 (2)0.0625 (17)0.103 (2)−0.0088 (16)0.0148 (18)0.0029 (15)
C1A0.0722 (19)0.085 (2)0.130 (3)0.0024 (15)−0.0080 (17)−0.0250 (18)
O4B0.0992 (18)0.0986 (17)0.213 (3)0.0340 (14)0.0132 (17)0.0055 (17)

Geometric parameters (Å, °)

N1A—O2A1.220 (3)C5B—C6B1.378 (4)
N1A—O1A1.220 (3)C5B—H140.9300
N1A—C2A1.484 (3)C9B—H180.9300
C4A—C9A1.387 (3)C5A—C6A1.374 (4)
C4A—C5A1.392 (3)C5A—H50.9300
C4A—C3A1.468 (3)C6B—C7B1.375 (4)
O1B—N1B1.206 (3)C6B—H150.9300
N1B—O2B1.212 (3)N2B—O3B1.183 (3)
N1B—C2B1.482 (3)N2B—O4B1.195 (3)
C3A—C2A1.320 (3)N2A—O3A1.184 (3)
C3A—H30.9300N2A—O4A1.186 (3)
C8B—C7B1.366 (4)N2A—C8A1.474 (4)
C8B—C9B1.369 (3)C8A—C7A1.370 (4)
C8B—N2B1.474 (4)C7B—H160.9300
C2A—C1A1.476 (3)C1B—H10A0.9600
C2B—C3B1.315 (3)C1B—H10B0.9600
C2B—C1B1.484 (3)C1B—H10C0.9600
C3B—C4B1.471 (3)C7A—C6A1.376 (4)
C3B—H120.9300C7A—H70.9300
C9A—C8A1.373 (3)C6A—H60.9300
C9A—H90.9300C1A—H1A0.9600
C4B—C9B1.384 (3)C1A—H1B0.9600
C4B—C5B1.388 (3)C1A—H1C0.9600
O2A—N1A—O1A123.0 (2)C6A—C5A—C4A121.4 (3)
O2A—N1A—C2A119.4 (2)C6A—C5A—H5119.3
O1A—N1A—C2A117.6 (2)C4A—C5A—H5119.3
C9A—C4A—C5A117.9 (2)C7B—C6B—C5B120.6 (3)
C9A—C4A—C3A123.5 (2)C7B—C6B—H15119.7
C5A—C4A—C3A118.5 (2)C5B—C6B—H15119.7
O1B—N1B—O2B122.2 (3)O3B—N2B—O4B121.1 (3)
O1B—N1B—C2B118.5 (3)O3B—N2B—C8B119.4 (3)
O2B—N1B—C2B119.2 (3)O4B—N2B—C8B119.4 (3)
C2A—C3A—C4A128.3 (2)O3A—N2A—O4A121.6 (3)
C2A—C3A—H3115.8O3A—N2A—C8A118.2 (3)
C4A—C3A—H3115.8O4A—N2A—C8A120.2 (3)
C7B—C8B—C9B123.0 (2)C7A—C8A—C9A122.7 (3)
C7B—C8B—N2B119.2 (2)C7A—C8A—N2A118.7 (3)
C9B—C8B—N2B117.8 (2)C9A—C8A—N2A118.5 (3)
C3A—C2A—C1A130.1 (2)C8B—C7B—C6B117.7 (2)
C3A—C2A—N1A115.6 (2)C8B—C7B—H16121.2
C1A—C2A—N1A114.2 (2)C6B—C7B—H16121.2
C3B—C2B—N1B116.2 (2)C2B—C1B—H10A109.5
C3B—C2B—C1B130.5 (2)C2B—C1B—H10B109.5
N1B—C2B—C1B113.2 (2)H10A—C1B—H10B109.5
C2B—C3B—C4B128.5 (2)C2B—C1B—H10C109.5
C2B—C3B—H12115.8H10A—C1B—H10C109.5
C4B—C3B—H12115.8H10B—C1B—H10C109.5
C8A—C9A—C4A119.5 (2)C8A—C7A—C6A118.0 (3)
C8A—C9A—H9120.2C8A—C7A—H7121.0
C4A—C9A—H9120.2C6A—C7A—H7121.0
C9B—C4B—C5B117.8 (2)C7A—C6A—C5A120.5 (3)
C9B—C4B—C3B117.4 (2)C7A—C6A—H6119.8
C5B—C4B—C3B124.7 (2)C5A—C6A—H6119.8
C6B—C5B—C4B121.3 (3)C2A—C1A—H1A109.5
C6B—C5B—H14119.4C2A—C1A—H1B109.5
C4B—C5B—H14119.4H1A—C1A—H1B109.5
C8B—C9B—C4B119.7 (2)C2A—C1A—H1C109.5
C8B—C9B—H18120.2H1A—C1A—H1C109.5
C4B—C9B—H18120.2H1B—C1A—H1C109.5
C9A—C4A—C3A—C2A34.4 (4)C5B—C4B—C9B—C8B−0.6 (4)
C5A—C4A—C3A—C2A−149.6 (3)C3B—C4B—C9B—C8B−177.6 (2)
C4A—C3A—C2A—C1A4.1 (5)C9A—C4A—C5A—C6A−0.8 (4)
C4A—C3A—C2A—N1A−179.1 (2)C3A—C4A—C5A—C6A−177.1 (2)
O2A—N1A—C2A—C3A12.3 (4)C4B—C5B—C6B—C7B0.0 (4)
O1A—N1A—C2A—C3A−168.5 (3)C7B—C8B—N2B—O3B−172.5 (3)
O2A—N1A—C2A—C1A−170.5 (3)C9B—C8B—N2B—O3B8.8 (4)
O1A—N1A—C2A—C1A8.8 (4)C7B—C8B—N2B—O4B10.2 (4)
O1B—N1B—C2B—C3B−170.4 (3)C9B—C8B—N2B—O4B−168.6 (3)
O2B—N1B—C2B—C3B11.1 (4)C4A—C9A—C8A—C7A−0.3 (4)
O1B—N1B—C2B—C1B7.1 (4)C4A—C9A—C8A—N2A−178.0 (2)
O2B—N1B—C2B—C1B−171.3 (3)O3A—N2A—C8A—C7A−179.8 (3)
N1B—C2B—C3B—C4B−178.8 (2)O4A—N2A—C8A—C7A0.3 (4)
C1B—C2B—C3B—C4B4.2 (5)O3A—N2A—C8A—C9A−2.0 (4)
C5A—C4A—C9A—C8A0.7 (3)O4A—N2A—C8A—C9A178.1 (3)
C3A—C4A—C9A—C8A176.7 (2)C9B—C8B—C7B—C6B−0.5 (4)
C2B—C3B—C4B—C9B−152.8 (3)N2B—C8B—C7B—C6B−179.3 (2)
C2B—C3B—C4B—C5B30.4 (4)C5B—C6B—C7B—C8B0.1 (4)
C9B—C4B—C5B—C6B0.2 (4)C9A—C8A—C7A—C6A0.1 (4)
C3B—C4B—C5B—C6B177.0 (2)N2A—C8A—C7A—C6A177.8 (2)
C7B—C8B—C9B—C4B0.8 (4)C8A—C7A—C6A—C5A−0.2 (4)
N2B—C8B—C9B—C4B179.5 (2)C4A—C5A—C6A—C7A0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9B—H18···O4Ai0.932.553.386 (4)149

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2463).

References

  • Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.
  • Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem.12, 1877–1894.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Ono, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2007). CrystalStructure Rigaku Americas Corporation, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography