PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1538–o1539.
Published online 2010 June 5. doi:  10.1107/S1600536810020258
PMCID: PMC3007007

9-(4-Hy­droxy-3-meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6-tetra­hydro-9H-xanthene-1,8(2H,7H)-dione

Abstract

In the title compound, C24H28O5, the two cyclo­hexene rings adopt envelope conformations, and the planes through the coplanar atoms makes dihedral angles of 82.86 (6) and 77.90 (6)° with the benzene ring. The two cyclo­hexene rings make a dihedral angle of 5.33 (6)° between their least-squares planes. The pyran ring adopts a flattened boat conformation. In the crystal packing, mol­ecules are linked into two-dimensional networks parallel to the ab plane via O—H(...)O and C—H(...)O inter­actions.

Related literature

For the synthesis of the title compound, see: Venkatesan et al. (2008 [triangle]). For general background to and the biological activity of xanthene derivatives, see: Hafez et al. (2008 [triangle]); Ashry et al. (2006 [triangle]); Sill & Sweet (1977 [triangle]); Ion (1997 [triangle]); Chibale et al. (2003 [triangle]). For reference bond lengths, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). For ring conformations, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1538-scheme1.jpg

Experimental

Crystal data

  • C24H28O5
  • M r = 396.46
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1538-efi1.jpg
  • a = 11.4861 (10) Å
  • b = 11.8659 (11) Å
  • c = 30.087 (3) Å
  • V = 4100.6 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.35 × 0.30 × 0.24 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.970, T max = 0.979
  • 26584 measured reflections
  • 5972 independent reflections
  • 4634 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.136
  • S = 1.06
  • 5972 reflections
  • 271 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020258/rz2454sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020258/rz2454Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NH, ASAR and NM are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). HKF and CKQ thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ also thanks USM for the award of USM Fellowship.

supplementary crystallographic information

Comment

Xanthene derivatives especially benzoxanthenes are well-known in organic synthesis due to their biologically active properties such as anti-inflammatory (Hafez et al., 2008), antimicrobial (Ashry et al., 2006), antiviral (Sill & Sweet, 1977) activities and as well as being used in photodynamic therapy (Ion, 1997). Molecules based on the 9,9-dimethylxanthene moiety have inhibitory activity towards trypanothione reductase (TryR) (Chibale et al., 2003). In view of its importance in this field, the crystal structure of the title compound was determined and the results are presented here.

The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges. The two cyclohexene rings, C1—C6 and C8—C13, adopt an envelope conformation, and the plane through the coplanar atoms makes dihedral angles of 82.86 (6)° and 77.90 (6)°, respectively, with the benzene ring (C14—C19). The puckering parameters (Cremer & Pople, 1975) are Q = 0.4872 (14) Å, Θ = 125.01 (16)° and [var phi] = 307.7 (2)° for the C1—C6 ring, Q = 0.4698 (14) Å, Θ = 56.48 (17)° and [var phi] = 172.6 (2) ° for the C8—C13 ring. The two cyclohexene rings make a dihedral angle of 5.33 (6)° between their least-squares planes. The pyran ring (O1/C1/C6—C8/C13) adopts a flattened boat conformation with atoms C7 and O1 deviating by 0.150 (1) and 0.111 (1) Å, respectively, from the base of the boat.

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional networks parallel to the ab plane via O5–H14O···O3, C2–H2A···O2 and C20–H20C···O2 interactions (Table 1).

Experimental

The synthesis of the title compound was performed according to the procedure described in the literature (Venkatesan et al., 2008). A mixture of vanilin (90 mg, 0.59 mmol), dimedone (160 mg, 1.14 mmol), p-toluenesulfonic acid (2 mg) in MeOH (4 ml) and water (2 ml) was heated to 50 °C in N2 atmosphere for about 20 min. Good quality crystals suitable for characterisation by X-ray crystallography were obtained by recrystallisation from hot methanol.

Refinement

Atom H14O was located in a difference Fourier map and allowed to refine freely. All other hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
The crystal structure of the title compound viewed along the c axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C24H28O5F(000) = 1696
Mr = 396.46Dx = 1.284 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5544 reflections
a = 11.4861 (10) Åθ = 2.2–31.4°
b = 11.8659 (11) ŵ = 0.09 mm1
c = 30.087 (3) ÅT = 100 K
V = 4100.6 (6) Å3Block, colourless
Z = 80.35 × 0.30 × 0.24 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer5972 independent reflections
Radiation source: fine-focus sealed tube4634 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −16→12
Tmin = 0.970, Tmax = 0.979k = −16→16
26584 measured reflectionsl = −20→42

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0729P)2 + 0.8139P] where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.28861 (7)0.40281 (8)0.37337 (3)0.01617 (19)
O20.01386 (8)0.44676 (8)0.26832 (3)0.0228 (2)
O3−0.01627 (8)0.68315 (9)0.41472 (4)0.0257 (2)
O40.35090 (8)0.35573 (8)0.36534 (3)0.0207 (2)
O50.27890 (8)0.17322 (8)0.41056 (4)0.0225 (2)
C1−0.23302 (10)0.38185 (10)0.33355 (4)0.0146 (2)
C2−0.30172 (10)0.30335 (11)0.30502 (4)0.0170 (2)
H2A−0.36160.34540.28950.020*
H2B−0.33980.24770.32360.020*
C3−0.22358 (11)0.24318 (11)0.27099 (4)0.0190 (3)
C4−0.15068 (12)0.33410 (12)0.24770 (5)0.0215 (3)
H4A−0.09830.29790.22680.026*
H4B−0.20230.38260.23080.026*
C5−0.08000 (11)0.40592 (10)0.27917 (4)0.0171 (2)
C6−0.12984 (10)0.42841 (10)0.32340 (4)0.0142 (2)
C7−0.05937 (10)0.49443 (10)0.35702 (4)0.0142 (2)
H7A−0.02280.55900.34230.017*
C8−0.14118 (10)0.53630 (10)0.39271 (4)0.0143 (2)
C9−0.10776 (11)0.63245 (11)0.42079 (4)0.0172 (2)
C10−0.19236 (11)0.67093 (11)0.45628 (5)0.0195 (3)
H10A−0.24280.72830.44380.023*
H10B−0.14870.70540.48030.023*
C11−0.26798 (11)0.57635 (11)0.47544 (4)0.0185 (3)
C12−0.32808 (11)0.51647 (11)0.43638 (4)0.0182 (3)
H12A−0.36460.44790.44710.022*
H12B−0.38880.56490.42470.022*
C13−0.24524 (10)0.48756 (10)0.39991 (4)0.0145 (2)
C140.03504 (10)0.41644 (10)0.37528 (4)0.0144 (2)
C150.15186 (10)0.43068 (10)0.36324 (4)0.0150 (2)
H15A0.17420.49370.34700.018*
C160.23459 (10)0.35118 (11)0.37548 (4)0.0154 (2)
C170.20159 (11)0.25532 (10)0.39955 (4)0.0163 (2)
C180.08671 (11)0.24362 (11)0.41294 (5)0.0192 (3)
H18A0.06480.18200.43010.023*
C190.00419 (11)0.32338 (11)0.40088 (5)0.0186 (3)
H19A−0.07260.31460.41000.022*
C20−0.14395 (12)0.15751 (11)0.29401 (5)0.0253 (3)
H20A−0.19060.10250.30920.038*
H20B−0.09510.19570.31510.038*
H20C−0.09630.12070.27220.038*
C21−0.29993 (13)0.18345 (13)0.23661 (5)0.0291 (3)
H21A−0.34980.13040.25140.044*
H21B−0.25130.14440.21570.044*
H21C−0.34650.23810.22120.044*
C22−0.36133 (12)0.62585 (14)0.50611 (5)0.0282 (3)
H22A−0.32460.66250.53080.042*
H22B−0.41070.56640.51680.042*
H22C−0.40720.67960.48990.042*
C23−0.19191 (13)0.49357 (13)0.50166 (5)0.0280 (3)
H23A−0.15510.53240.52590.042*
H23B−0.13340.46260.48240.042*
H23C−0.23960.43380.51310.042*
C240.39966 (11)0.46439 (12)0.35714 (5)0.0238 (3)
H24A0.48310.45940.35770.036*
H24B0.37390.51600.37970.036*
H24C0.37480.49080.32850.036*
H14O0.3488 (19)0.1956 (19)0.4055 (8)0.047 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0129 (4)0.0191 (4)0.0165 (4)−0.0030 (3)0.0024 (3)−0.0032 (3)
O20.0224 (5)0.0237 (5)0.0223 (5)−0.0030 (4)0.0075 (4)0.0022 (4)
O30.0185 (5)0.0247 (5)0.0339 (6)−0.0067 (4)0.0031 (4)−0.0047 (4)
O40.0105 (4)0.0246 (5)0.0272 (5)0.0030 (3)0.0023 (3)0.0053 (4)
O50.0165 (5)0.0195 (5)0.0315 (5)0.0044 (4)−0.0038 (4)0.0044 (4)
C10.0140 (5)0.0146 (5)0.0152 (5)0.0022 (4)0.0005 (4)0.0006 (4)
C20.0153 (5)0.0179 (5)0.0179 (6)−0.0010 (4)−0.0009 (4)−0.0017 (5)
C30.0214 (6)0.0169 (6)0.0187 (6)−0.0027 (5)0.0022 (5)−0.0026 (5)
C40.0263 (7)0.0216 (6)0.0166 (6)−0.0029 (5)0.0036 (5)−0.0008 (5)
C50.0205 (6)0.0143 (5)0.0166 (6)0.0021 (4)0.0024 (5)0.0028 (5)
C60.0132 (5)0.0135 (5)0.0159 (5)0.0021 (4)0.0003 (4)0.0024 (4)
C70.0106 (5)0.0146 (5)0.0173 (6)0.0004 (4)0.0012 (4)0.0017 (4)
C80.0114 (5)0.0148 (5)0.0166 (5)0.0015 (4)−0.0001 (4)0.0015 (4)
C90.0144 (5)0.0166 (5)0.0206 (6)0.0004 (4)−0.0021 (5)0.0007 (5)
C100.0165 (6)0.0202 (6)0.0219 (6)−0.0002 (5)−0.0008 (5)−0.0049 (5)
C110.0155 (5)0.0237 (6)0.0163 (6)−0.0008 (5)0.0010 (5)−0.0023 (5)
C120.0127 (5)0.0229 (6)0.0191 (6)−0.0005 (4)0.0017 (4)−0.0036 (5)
C130.0119 (5)0.0161 (5)0.0156 (5)0.0006 (4)−0.0011 (4)−0.0001 (5)
C140.0116 (5)0.0152 (5)0.0164 (5)0.0014 (4)−0.0005 (4)−0.0004 (4)
C150.0129 (5)0.0156 (5)0.0164 (5)−0.0004 (4)0.0002 (4)0.0008 (4)
C160.0112 (5)0.0199 (6)0.0151 (5)0.0013 (4)−0.0007 (4)−0.0016 (5)
C170.0141 (5)0.0177 (6)0.0171 (6)0.0026 (4)−0.0031 (4)−0.0001 (5)
C180.0169 (6)0.0173 (6)0.0235 (6)−0.0005 (4)−0.0003 (5)0.0043 (5)
C190.0130 (5)0.0193 (6)0.0235 (6)−0.0002 (4)0.0016 (5)0.0028 (5)
C200.0260 (7)0.0145 (6)0.0354 (8)0.0013 (5)0.0065 (6)0.0001 (6)
C210.0334 (8)0.0288 (7)0.0252 (7)−0.0090 (6)0.0034 (6)−0.0102 (6)
C220.0221 (7)0.0409 (8)0.0216 (7)−0.0028 (6)0.0033 (5)−0.0115 (6)
C230.0301 (7)0.0339 (8)0.0200 (7)0.0016 (6)−0.0021 (6)0.0045 (6)
C240.0143 (6)0.0272 (7)0.0298 (7)−0.0045 (5)0.0002 (5)−0.0047 (6)

Geometric parameters (Å, °)

O1—C131.3772 (15)C11—C221.5317 (18)
O1—C11.3802 (14)C11—C231.5333 (19)
O2—C51.2263 (15)C11—C121.5370 (18)
O3—C91.2246 (15)C12—C131.4922 (17)
O4—C161.3714 (15)C12—H12A0.9700
O4—C241.4272 (17)C12—H12B0.9700
O5—C171.3591 (15)C14—C191.3922 (18)
O5—H14O0.86 (2)C14—C151.4001 (16)
C1—C61.3427 (17)C15—C161.3886 (17)
C1—C21.4924 (17)C15—H15A0.9300
C2—C31.5372 (18)C16—C171.4007 (18)
C2—H2A0.9700C17—C181.3867 (18)
C2—H2B0.9700C18—C191.3877 (18)
C3—C211.5301 (19)C18—H18A0.9300
C3—C201.5329 (19)C19—H19A0.9300
C3—C41.5350 (18)C20—H20A0.9600
C4—C51.5106 (19)C20—H20B0.9600
C4—H4A0.9700C20—H20C0.9600
C4—H4B0.9700C21—H21A0.9600
C5—C61.4730 (17)C21—H21B0.9600
C6—C71.5140 (17)C21—H21C0.9600
C7—C81.5108 (17)C22—H22A0.9600
C7—C141.5278 (16)C22—H22B0.9600
C7—H7A0.9800C22—H22C0.9600
C8—C131.3454 (16)C23—H23A0.9600
C8—C91.4706 (17)C23—H23B0.9600
C9—C101.5143 (18)C23—H23C0.9600
C10—C111.5317 (18)C24—H24A0.9600
C10—H10A0.9700C24—H24B0.9600
C10—H10B0.9700C24—H24C0.9600
C13—O1—C1117.88 (9)C11—C12—H12A109.1
C16—O4—C24117.15 (10)C13—C12—H12B109.1
C17—O5—H14O110.3 (15)C11—C12—H12B109.1
C6—C1—O1122.11 (11)H12A—C12—H12B107.8
C6—C1—C2126.34 (11)C8—C13—O1122.80 (11)
O1—C1—C2111.55 (10)C8—C13—C12125.88 (11)
C1—C2—C3111.36 (10)O1—C13—C12111.32 (10)
C1—C2—H2A109.4C19—C14—C15118.86 (11)
C3—C2—H2A109.4C19—C14—C7119.92 (10)
C1—C2—H2B109.4C15—C14—C7120.94 (11)
C3—C2—H2B109.4C16—C15—C14120.35 (12)
H2A—C2—H2B108.0C16—C15—H15A119.8
C21—C3—C20109.88 (12)C14—C15—H15A119.8
C21—C3—C4109.24 (11)O4—C16—C15125.52 (12)
C20—C3—C4110.30 (11)O4—C16—C17114.24 (11)
C21—C3—C2109.31 (11)C15—C16—C17120.23 (11)
C20—C3—C2110.83 (11)O5—C17—C18118.62 (12)
C4—C3—C2107.22 (10)O5—C17—C16122.09 (11)
C5—C4—C3113.79 (11)C18—C17—C16119.28 (11)
C5—C4—H4A108.8C17—C18—C19120.37 (12)
C3—C4—H4A108.8C17—C18—H18A119.8
C5—C4—H4B108.8C19—C18—H18A119.8
C3—C4—H4B108.8C18—C19—C14120.78 (12)
H4A—C4—H4B107.7C18—C19—H19A119.6
O2—C5—C6120.71 (12)C14—C19—H19A119.6
O2—C5—C4121.91 (12)C3—C20—H20A109.5
C6—C5—C4117.36 (11)C3—C20—H20B109.5
C1—C6—C5118.29 (11)H20A—C20—H20B109.5
C1—C6—C7122.20 (11)C3—C20—H20C109.5
C5—C6—C7119.31 (10)H20A—C20—H20C109.5
C8—C7—C6108.21 (10)H20B—C20—H20C109.5
C8—C7—C14112.65 (10)C3—C21—H21A109.5
C6—C7—C14107.84 (10)C3—C21—H21B109.5
C8—C7—H7A109.4H21A—C21—H21B109.5
C6—C7—H7A109.4C3—C21—H21C109.5
C14—C7—H7A109.4H21A—C21—H21C109.5
C13—C8—C9118.22 (11)H21B—C21—H21C109.5
C13—C8—C7121.72 (11)C11—C22—H22A109.5
C9—C8—C7120.07 (10)C11—C22—H22B109.5
O3—C9—C8121.30 (12)H22A—C22—H22B109.5
O3—C9—C10120.51 (12)C11—C22—H22C109.5
C8—C9—C10118.14 (11)H22A—C22—H22C109.5
C9—C10—C11114.09 (11)H22B—C22—H22C109.5
C9—C10—H10A108.7C11—C23—H23A109.5
C11—C10—H10A108.7C11—C23—H23B109.5
C9—C10—H10B108.7H23A—C23—H23B109.5
C11—C10—H10B108.7C11—C23—H23C109.5
H10A—C10—H10B107.6H23A—C23—H23C109.5
C22—C11—C10110.04 (11)H23B—C23—H23C109.5
C22—C11—C23109.54 (12)O4—C24—H24A109.5
C10—C11—C23109.87 (11)O4—C24—H24B109.5
C22—C11—C12108.88 (10)H24A—C24—H24B109.5
C10—C11—C12107.80 (11)O4—C24—H24C109.5
C23—C11—C12110.68 (11)H24A—C24—H24C109.5
C13—C12—C11112.46 (10)H24B—C24—H24C109.5
C13—C12—H12A109.1
C13—O1—C1—C610.47 (17)C9—C10—C11—C22−172.25 (11)
C13—O1—C1—C2−169.61 (10)C9—C10—C11—C2367.06 (14)
C6—C1—C2—C322.80 (18)C9—C10—C11—C12−53.64 (14)
O1—C1—C2—C3−157.11 (10)C22—C11—C12—C13167.54 (12)
C1—C2—C3—C21−168.27 (11)C10—C11—C12—C1348.19 (14)
C1—C2—C3—C2070.47 (13)C23—C11—C12—C13−71.99 (14)
C1—C2—C3—C4−49.96 (14)C9—C8—C13—O1174.91 (11)
C21—C3—C4—C5174.64 (12)C7—C8—C13—O1−5.31 (18)
C20—C3—C4—C5−64.49 (15)C9—C8—C13—C12−4.82 (19)
C2—C3—C4—C556.29 (14)C7—C8—C13—C12174.95 (12)
C3—C4—C5—O2148.98 (12)C1—O1—C13—C8−12.05 (17)
C3—C4—C5—C6−32.87 (16)C1—O1—C13—C12167.72 (10)
O1—C1—C6—C5−176.84 (10)C11—C12—C13—C8−21.12 (18)
C2—C1—C6—C53.25 (18)C11—C12—C13—O1159.11 (10)
O1—C1—C6—C78.37 (18)C8—C7—C14—C1952.88 (15)
C2—C1—C6—C7−171.54 (11)C6—C7—C14—C19−66.46 (15)
O2—C5—C6—C1179.82 (11)C8—C7—C14—C15−133.24 (12)
C4—C5—C6—C11.65 (17)C6—C7—C14—C15107.43 (13)
O2—C5—C6—C7−5.23 (17)C19—C14—C15—C162.08 (19)
C4—C5—C6—C7176.59 (11)C7—C14—C15—C16−171.87 (11)
C1—C6—C7—C8−22.67 (15)C24—O4—C16—C1525.08 (18)
C5—C6—C7—C8162.59 (10)C24—O4—C16—C17−156.10 (12)
C1—C6—C7—C1499.45 (13)C14—C15—C16—O4179.50 (12)
C5—C6—C7—C14−75.29 (13)C14—C15—C16—C170.74 (19)
C6—C7—C8—C1321.08 (15)O4—C16—C17—O5−1.71 (18)
C14—C7—C8—C13−98.04 (13)C15—C16—C17—O5177.18 (12)
C6—C7—C8—C9−159.15 (11)O4—C16—C17—C18177.85 (12)
C14—C7—C8—C981.73 (14)C15—C16—C17—C18−3.26 (19)
C13—C8—C9—O3−177.09 (12)O5—C17—C18—C19−177.48 (12)
C7—C8—C9—O33.13 (18)C16—C17—C18—C193.0 (2)
C13—C8—C9—C100.12 (17)C17—C18—C19—C14−0.1 (2)
C7—C8—C9—C10−179.65 (11)C15—C14—C19—C18−2.4 (2)
O3—C9—C10—C11−152.16 (12)C7—C14—C19—C18171.61 (12)
C8—C9—C10—C1130.60 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H14O···O3i0.86 (2)1.95 (2)2.7319 (13)151 (2)
C2—H2A···O2ii0.972.553.5003 (16)165
C20—H20C···O2iii0.962.583.4646 (17)154

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1/2, y, −z+1/2; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2454).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ashry, E. S. H. E., Awad, L. F., Ibrahim, E. S. I. & Bdeewy, O. K. (2006). Arkivoc, 2, 178–186.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chibale, K., Visser, M., Schalkwyk, D., Smith, P. J., Saravanamuthu, A. & Fairlamb, A. H. (2003). Tetrahedron, 59, 2289–2296.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett.18, 4538–4543. [PubMed]
  • Ion, R. M. (1997). Prog. Catal.2, 55–76.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sill, A. D. & Sweet, F. W. (1977). US Patent No. 4008240.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Venkatesan, K., Pujari, S. S., Lahoti, R. J. & Srinivasan, K. V. (2008). Ultrason. Sonochem.15, 548–553. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography