PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1611–o1612.
Published online 2010 June 9. doi:  10.1107/S1600536810020866
PMCID: PMC3007004

(4S)-4-Benzyl-N-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]sulfon­yl}-2-oxo-1,3-oxazolidine-3-carboxamide

Abstract

The title compound, C21H21N3O7S, contains an oxazolidinone ring and a sulfonamide group, both characteristic for biologically and pharrmaceutically active compounds. Both stereogenic centres reveal an S absolute configuration. The two oxazolidinone rings are in an envelope conformation with the methyl­ene carbon flap atoms deviating by 0.428 (1) and 0.364 (2) Å from the best least-square planes formed by the four other ring atoms. An intra­molecular N—H(...)O hydrogen bond contributes to the folded conformation of the mol­ecule. In the crystal, weak inter­molecular C—H(...)O inter­actions connect the mol­ecules into helices along the the twofold screw axes.

Related literature

For the biological activity of sulfonamides, see: Gayathri et al. (2006 [triangle]); Supuran et al. (2003 [triangle]); Kang & Reynolds (2009 [triangle]); Bouasla et al. (2010 [triangle]). For heterocyclic sulfonamide derivatives, see: Yan et al. (2007 [triangle]); Naganawa et al. (2006 [triangle]). For their use in coordination chemistry, see: King & Burgen (1976 [triangle]); Beloso et al. (2005 [triangle]). For hydrogen bonding, see: Adsmond & Grant (2001 [triangle]); Bernstein et al. (1995 [triangle]). For related structures, see: Michaux et al. (2001 [triangle]); Cheng et al. (2005 [triangle]); Benali-Cherif et al.(2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1611-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O7S
  • M r = 459.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1611-efi1.jpg
  • a = 10.4262 (3) Å
  • b = 9.7171 (2) Å
  • c = 10.7402 (2) Å
  • β = 101.504 (2)°
  • V = 1066.26 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 293 K
  • 0.2 × 0.1 × 0.1 mm

Data collection

  • Nonius KappaCCD diffractometer
  • 17946 measured reflections
  • 5245 independent reflections
  • 3795 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.152
  • S = 1.00
  • 5245 reflections
  • 289 parameters
  • 1 restraint
  • H-atom parameters constraned
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1981 Friedel pairs
  • Flack parameter: 0.06 (8)

Data collection: KappaCCD Server Software (Nonius, 1998 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020866/kp2261sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020866/kp2261Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to thank Dr M. Giorgi, Faculté des Sciences et Techniques de Saint Jérome, Marseilles, France, for providing diffraction facilities, and the DG-RSDT and the Centre Universitaire ‘Abbes Laghrour’- Khenchela, Algeria for financial support.

supplementary crystallographic information

Comment

Sulfonamides constitute an important class of biologically active compounds and have several pharmaceutical applications for a variety of diseases because of their potential pharmacological activities such as antimalarial, antibacterial diuretic, hypoglycaemic, antigermicidal(Gayathri et al., 2006;) and antitumoral (Supuran et al. , 2003).

N-Acylsulfonamide is an important functional group in organic chemistry and is present in many biologically active molecules. They has been incorporated into tested drugs and therapeutic agents for Alzheimer's disease, bacterial infection, osteoporolysis, and cancer (Kang et al. , 2009). Recently, it was reported on the in vitro activity of acylsulfonamide bis-oxazolidinone against the virulent strain RH of Toxoplasma gondii and the human lymphocytes (Bouasla et al., 2010).

Those compounds have also been useful in studies of the physical chemistry and the mechanism of action of carbonic anhydrase because of their highly specific interaction with the active site (King & Burgen, 1976). Moreover, sulfonamides containing different donor atoms find use in coordination chemistry (Beloso et al. , 2005). They are also very interesting for studying hydrogen-bonding interactions (Adsmond & Grant, 2001).

Recently, many new heterocyclic sulfonamide derivatives have been synthesised (Yan et al., 2007) and some of them have been optimized as highly selective EP1 receptor antagonists (Naganawa et al., 2006). We report here the molecular structure of a new heterocyclic sulfonamide, (I), derived from R-phenyl alanine which was prepared in order to investigate its potential clinical application.

In the molecule C21H21N3O7S, (Fig. 1), the distances and angles around the sulfonamide group are within the expected range of values found in similar structures (Michaux et al. , 2001).

The S—O bond lengths observed are shorter in C21H21N3O7S [1.411 (2) Å] than in C23H36N4O8S2 [1.443 (3) Å] (Caira et al., 1993) and C16H19BrN2O2S [1.432 (4) Å] (Benali-Cherif et al., 2002)suggesting that electronic delocalization is less important for the O atoms of the sulfonamide group in (I) than in the other sulfonamide derivatives. The geometric parameters of the oxazolidinone rings are in a good agreement with those reported in previous similar studies (Cheng et al. , 2005). The non-planarity of the heterocyclic rings is evidenced by the torsion angles of -12.0 (3)° and -12.2 (3)° for C2B—O1B—C1B—N2B and C2A—O1A—C1A—N1A, respectively.

The molecular structure is stabilized by an intramolecular N—H···O hydrogen-bond interaction (Fig. 2) involving the NH group and the carbonyl O atom. In the crystal packing (Fig. 3), molecules are linked by infinite chains of C—H···O hydrogen-bonds (Table 1) running parallel to the b axis and generating a C(9) graph-set motif (Bernstein et al., 1995).

Experimental

N,N'-acylsulfonamide bis-oxazolidinones are prepared in two steps: carbamoylationand sulfamoylation, from the condensation reaction of oxazolidin-2-one derived from S-phenylalanine with chlorosulfonyl carbamate. The synthesis carried out in two steps: carbamoylation and sulfamoylation, starting from chlorosulfonyl isocyanate and α-hydroxyester.

To a stirred solution of chlorosulfonyl isocyanate (1.62 g, 11.4 mmol) in 20 ml of anhydrous CH2Cl2 at 0°C, was added dropwise 1 equivalent of -hydroxyester (1.34 g, 11.4 mmol) in 5 ml of the same of solvent. After 30 min, the carbamate was added to a solution of oxazolidinine (2.01 g, 11.4 mmol), in presence of 1.1 equivalent of triethylamine at 273 K. The reaction was stirred for less than 1 h at room temperature. The reaction mixture was washed with hydrochloride acid (0.1 N, 2x10 mL) and water (20 mL). Organic layers were dried over anhydrous magnesium sulfate, filtrated and concentrated under vacuum. The residue was purified by chromatography on silica gel eluted by CH2Cl2 to give 17% of carboxylsulfamides and 46% of N-acylsulfonamide bis oxazolidinone as a white solid.

Single crystals suitable for X-ray structure analysis could be obtained by slow evaporation of a concentrated solution in ether at room temperature.

Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. H atoms were positioned with idealized geometry and refined using a riding model with C—H and N—H bond lengths constrained to 0.93–0.98 and 0.86 Å, respectively. Their isotropic displacement parameters were set equal to 1.2Ueq (parent atom). The title compound crystallizes in the non centrosymmetric space group P21 and the absolute configuration is determined from measured Friedel opposites.

Figures

Fig. 1.
ORTEP view of the asymmetric unit of (I) showing 50% probability displacement ellipsoids.
Fig. 2.
A view of the intramolecular N-H···O interaction.
Fig. 3.
Crystal packing with intermolecular hydrogen bonding patterns shown as dashed lines.

Crystal data

C21H21N3O7SF(000) = 480
Mr = 459.48Dx = 1.431 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.4262 (3) ÅCell parameters from 3258 reflections
b = 9.7171 (2) Åθ = 2.5–30.0°
c = 10.7402 (2) ŵ = 0.20 mm1
β = 101.504 (2)°T = 293 K
V = 1066.26 (4) Å3Prism, yellow
Z = 20.2 × 0.1 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer3795 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
graphiteθmax = 30.0°, θmin = 2.5°
ω – θ scansh = −14→12
17946 measured reflectionsk = −9→13
5245 independent reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.152w = 1/[σ2(Fo2) + (0.0929P)2 + 0.0529P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5245 reflectionsΔρmax = 0.24 e Å3
289 parametersΔρmin = −0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1981 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.06 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.11803 (6)0.79846 (7)1.11762 (6)0.04863 (18)
N2B1.25586 (19)0.7726 (2)1.06927 (19)0.0437 (5)
C5B1.5343 (2)0.8050 (3)1.2204 (2)0.0487 (5)
O21.1209 (2)0.9380 (3)1.1528 (2)0.0654 (6)
O1B1.3838 (2)0.6678 (2)0.9587 (2)0.0627 (6)
O2A0.7466 (2)0.7106 (2)0.9147 (2)0.0630 (6)
O1A0.66210 (19)0.8112 (3)0.7296 (2)0.0747 (7)
O2B1.2389 (3)0.5376 (3)1.0322 (3)0.0775 (7)
O31.08127 (19)0.9126 (2)0.85647 (19)0.0569 (5)
O11.0989 (2)0.6947 (3)1.2046 (2)0.0722 (7)
N1A0.87763 (19)0.8226 (2)0.7943 (2)0.0471 (5)
C4B1.4444 (3)0.9200 (3)1.1659 (3)0.0522 (6)
H42B1.49700.99651.14680.063*
H41B1.39730.95081.23010.063*
C10.9943 (2)0.8416 (3)0.8803 (3)0.0444 (5)
C3B1.3446 (2)0.8833 (3)1.0456 (3)0.0482 (6)
H3B1.29430.96491.01180.058*
C3A0.8541 (3)0.8789 (4)0.6648 (3)0.0565 (7)
H3A0.90460.96330.66110.068*
C2B1.4016 (3)0.8134 (4)0.9414 (3)0.0603 (7)
H22B1.35560.84270.85810.072*
H21B1.49370.83540.95020.072*
C6B1.6509 (3)0.7814 (4)1.1794 (3)0.0596 (7)
H6B1.67450.84111.12010.071*
C1A0.7615 (3)0.7751 (3)0.8242 (3)0.0542 (7)
C1B1.2861 (3)0.6467 (3)1.0213 (3)0.0517 (6)
C5A1.0220 (3)0.7315 (3)0.5809 (3)0.0584 (7)
C10B1.5048 (3)0.7145 (4)1.3092 (3)0.0664 (9)
H10B1.42890.72711.34100.080*
C2A0.7090 (3)0.9099 (5)0.6474 (4)0.0745 (10)
H21A0.69461.00350.67290.089*
H22A0.66530.89720.55960.089*
C7B1.7327 (3)0.6731 (4)1.2235 (3)0.0658 (8)
H7B1.81040.66141.19470.079*
C4A0.8813 (3)0.7738 (5)0.5683 (3)0.0721 (9)
H41A0.82980.69210.57540.087*
H42A0.85120.81130.48390.087*
C6A1.0983 (4)0.7965 (5)0.5074 (3)0.0786 (10)
H6A1.06160.86400.44980.094*
C9B1.5884 (4)0.6031 (5)1.3526 (4)0.0823 (12)
H9B1.56690.54191.41180.099*
C10A1.0801 (5)0.6306 (4)0.6632 (4)0.0861 (12)
H10A1.03110.58350.71300.103*
C8A1.2831 (6)0.6652 (11)0.5994 (8)0.141 (3)
H8A1.37090.64310.60550.169*
C9A1.2111 (8)0.5991 (7)0.6722 (6)0.126 (3)
H9A1.24990.53170.72900.151*
C8B1.7004 (4)0.5848 (4)1.3079 (4)0.0740 (9)
H8B1.75470.51051.33600.089*
C7A1.2278 (6)0.7624 (8)0.5188 (6)0.118 (2)
H7A1.27800.80800.46920.141*
N11.0021 (2)0.7704 (3)0.9924 (2)0.0512 (5)
H1N0.94390.70890.99700.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0478 (3)0.0557 (4)0.0443 (3)−0.0059 (3)0.0135 (2)−0.0030 (3)
N2B0.0420 (9)0.0395 (12)0.0494 (10)−0.0003 (8)0.0089 (8)−0.0003 (9)
C5B0.0451 (11)0.0479 (14)0.0513 (12)−0.0111 (12)0.0056 (9)−0.0086 (13)
O20.0560 (11)0.0671 (14)0.0769 (13)−0.0016 (10)0.0222 (10)−0.0215 (12)
O1B0.0726 (13)0.0603 (13)0.0580 (11)0.0165 (10)0.0196 (10)−0.0061 (10)
O2A0.0549 (12)0.0544 (13)0.0836 (15)−0.0101 (9)0.0232 (10)−0.0051 (12)
O1A0.0402 (9)0.0917 (18)0.0871 (15)0.0001 (11)0.0006 (9)−0.0081 (15)
O2B0.108 (2)0.0414 (12)0.0823 (16)−0.0072 (12)0.0179 (14)−0.0036 (11)
O30.0456 (9)0.0636 (14)0.0597 (10)−0.0092 (9)0.0065 (8)0.0109 (10)
O10.0742 (14)0.0918 (19)0.0524 (11)−0.0146 (13)0.0167 (10)0.0165 (12)
N1A0.0408 (9)0.0505 (14)0.0499 (10)−0.0014 (9)0.0086 (8)−0.0058 (10)
C4B0.0468 (13)0.0416 (14)0.0707 (16)−0.0057 (11)0.0178 (12)−0.0073 (13)
C10.0430 (11)0.0410 (13)0.0496 (13)−0.0016 (9)0.0101 (9)−0.0027 (10)
C3B0.0471 (12)0.0396 (14)0.0603 (15)0.0015 (11)0.0163 (11)0.0037 (12)
C3A0.0529 (14)0.0639 (19)0.0493 (14)0.0022 (13)0.0022 (11)−0.0019 (13)
C2B0.0613 (14)0.067 (2)0.0560 (14)0.0092 (14)0.0208 (11)0.0117 (15)
C6B0.0529 (13)0.068 (2)0.0583 (14)0.0038 (14)0.0119 (11)−0.0068 (16)
C1A0.0407 (12)0.0506 (17)0.0720 (16)−0.0042 (11)0.0126 (11)−0.0146 (15)
C1B0.0633 (15)0.0403 (15)0.0494 (13)0.0066 (12)0.0066 (11)0.0001 (11)
C5A0.0730 (18)0.0586 (18)0.0410 (12)0.0076 (14)0.0054 (12)−0.0115 (12)
C10B0.0473 (15)0.087 (2)0.0632 (17)−0.0144 (15)0.0069 (12)0.0109 (17)
C2A0.0508 (15)0.094 (3)0.0736 (19)0.0098 (16)−0.0006 (13)0.002 (2)
C7B0.0561 (16)0.075 (2)0.0647 (17)0.0071 (15)0.0077 (13)−0.0119 (17)
C4A0.0688 (18)0.092 (3)0.0518 (14)−0.0020 (18)0.0033 (12)−0.0188 (18)
C6A0.094 (2)0.086 (3)0.0620 (16)0.011 (2)0.0306 (16)−0.006 (2)
C9B0.077 (2)0.086 (3)0.077 (2)−0.018 (2)−0.0017 (18)0.026 (2)
C10A0.127 (4)0.063 (2)0.064 (2)0.019 (2)0.008 (2)−0.0088 (17)
C8A0.093 (4)0.196 (7)0.121 (4)0.063 (4)−0.008 (3)−0.095 (5)
C9A0.157 (5)0.112 (4)0.090 (3)0.081 (4)−0.022 (4)−0.032 (3)
C8B0.0590 (17)0.071 (2)0.082 (2)−0.0021 (16)−0.0105 (15)−0.0031 (19)
C7A0.101 (3)0.141 (5)0.125 (4)0.003 (4)0.058 (3)−0.048 (4)
N10.0451 (11)0.0539 (14)0.0544 (11)−0.0113 (10)0.0092 (8)0.0035 (11)

Geometric parameters (Å, °)

S1—O21.407 (2)C2B—H22B0.9700
S1—O11.416 (2)C2B—H21B0.9700
S1—N2B1.642 (2)C6B—C7B1.378 (5)
S1—N11.642 (2)C6B—H6B0.9300
N2B—C1B1.389 (4)C5A—C10A1.377 (5)
N2B—C3B1.473 (3)C5A—C6A1.380 (5)
C5B—C10B1.377 (4)C5A—C4A1.503 (5)
C5B—C6B1.392 (4)C10B—C9B1.410 (6)
C5B—C4B1.501 (4)C10B—H10B0.9300
O1B—C1B1.343 (4)C2A—H21A0.9700
O1B—C2B1.444 (4)C2A—H22A0.9700
O2A—C1A1.192 (4)C7B—C8B1.339 (6)
O1A—C1A1.345 (4)C7B—H7B0.9300
O1A—C2A1.453 (5)C4A—H41A0.9700
O2B—C1B1.184 (4)C4A—H42A0.9700
O3—C11.207 (3)C6A—C7A1.372 (7)
N1A—C11.385 (3)C6A—H6A0.9300
N1A—C1A1.392 (4)C9B—C8B1.360 (6)
N1A—C3A1.470 (4)C9B—H9B0.9300
C4B—C3B1.531 (4)C10A—C9A1.384 (9)
C4B—H42B0.9700C10A—H10A0.9300
C4B—H41B0.9700C8A—C7A1.332 (12)
C1—N11.377 (4)C8A—C9A1.350 (11)
C3B—C2B1.526 (4)C8A—H8A0.9300
C3B—H3B0.9800C9A—H9A0.9300
C3A—C2A1.517 (4)C8B—H8B0.9300
C3A—C4A1.521 (5)C7A—H7A0.9300
C3A—H3A0.9800N1—H1N0.8600
O2—S1—O1120.50 (16)O1A—C1A—N1A108.3 (3)
O2—S1—N2B105.02 (12)O2B—C1B—O1B123.9 (3)
O1—S1—N2B110.32 (14)O2B—C1B—N2B128.5 (3)
O2—S1—N1110.68 (14)O1B—C1B—N2B107.6 (2)
O1—S1—N1104.18 (13)C10A—C5A—C6A117.6 (4)
N2B—S1—N1105.28 (12)C10A—C5A—C4A123.3 (4)
C1B—N2B—C3B112.4 (2)C6A—C5A—C4A119.1 (3)
C1B—N2B—S1122.03 (19)C5B—C10B—C9B120.7 (3)
C3B—N2B—S1124.24 (18)C5B—C10B—H10B119.7
C10B—C5B—C6B116.4 (3)C9B—C10B—H10B119.7
C10B—C5B—C4B122.5 (3)O1A—C2A—C3A104.0 (3)
C6B—C5B—C4B121.1 (3)O1A—C2A—H21A110.9
C1B—O1B—C2B110.1 (2)C3A—C2A—H21A110.9
C1A—O1A—C2A109.2 (2)O1A—C2A—H22A110.9
C1—N1A—C1A125.4 (2)C3A—C2A—H22A110.9
C1—N1A—C3A122.7 (2)H21A—C2A—H22A109.0
C1A—N1A—C3A110.7 (2)C8B—C7B—C6B120.0 (3)
C5B—C4B—C3B115.0 (2)C8B—C7B—H7B120.0
C5B—C4B—H42B108.5C6B—C7B—H7B120.0
C3B—C4B—H42B108.5C5A—C4A—C3A115.7 (2)
C5B—C4B—H41B108.5C5A—C4A—H41A108.3
C3B—C4B—H41B108.5C3A—C4A—H41A108.3
H42B—C4B—H41B107.5C5A—C4A—H42A108.3
O3—C1—N1123.8 (2)C3A—C4A—H42A108.3
O3—C1—N1A122.1 (2)H41A—C4A—H42A107.4
N1—C1—N1A114.0 (2)C7A—C6A—C5A120.5 (5)
N2B—C3B—C2B98.7 (2)C7A—C6A—H6A119.7
N2B—C3B—C4B111.6 (2)C5A—C6A—H6A119.7
C2B—C3B—C4B115.1 (2)C8B—C9B—C10B120.1 (4)
N2B—C3B—H3B110.3C8B—C9B—H9B119.9
C2B—C3B—H3B110.3C10B—C9B—H9B119.9
C4B—C3B—H3B110.3C5A—C10A—C9A120.3 (5)
N1A—C3A—C2A99.5 (3)C5A—C10A—H10A119.9
N1A—C3A—C4A112.1 (3)C9A—C10A—H10A119.9
C2A—C3A—C4A111.5 (3)C7A—C8A—C9A119.7 (5)
N1A—C3A—H3A111.1C7A—C8A—H8A120.1
C2A—C3A—H3A111.1C9A—C8A—H8A120.1
C4A—C3A—H3A111.1C8A—C9A—C10A120.6 (5)
O1B—C2B—C3B105.3 (2)C8A—C9A—H9A119.7
O1B—C2B—H22B110.7C10A—C9A—H9A119.7
C3B—C2B—H22B110.7C7B—C8B—C9B120.3 (4)
O1B—C2B—H21B110.7C7B—C8B—H8B119.8
C3B—C2B—H21B110.7C9B—C8B—H8B119.8
H22B—C2B—H21B108.8C8A—C7A—C6A121.3 (6)
C7B—C6B—C5B122.5 (3)C8A—C7A—H7A119.4
C7B—C6B—H6B118.8C6A—C7A—H7A119.4
C5B—C6B—H6B118.8C1—N1—S1122.56 (18)
O2A—C1A—O1A123.1 (3)C1—N1—H1N118.7
O2A—C1A—N1A128.5 (3)S1—N1—H1N118.7
O2—S1—N2B—C1B−177.2 (2)C2B—O1B—C1B—O2B168.8 (3)
O1—S1—N2B—C1B51.6 (2)C2B—O1B—C1B—N2B−12.0 (3)
N1—S1—N2B—C1B−60.3 (2)C3B—N2B—C1B—O2B174.7 (3)
O2—S1—N2B—C3B−11.1 (2)S1—N2B—C1B—O2B−17.8 (4)
O1—S1—N2B—C3B−142.4 (2)C3B—N2B—C1B—O1B−4.4 (3)
N1—S1—N2B—C3B105.8 (2)S1—N2B—C1B—O1B163.15 (18)
C10B—C5B—C4B—C3B−90.1 (3)C6B—C5B—C10B—C9B−1.4 (4)
C6B—C5B—C4B—C3B87.5 (3)C4B—C5B—C10B—C9B176.3 (3)
C1A—N1A—C1—O3−161.7 (3)C1A—O1A—C2A—C3A26.0 (4)
C3A—N1A—C1—O34.4 (4)N1A—C3A—C2A—O1A−27.6 (3)
C1A—N1A—C1—N119.6 (4)C4A—C3A—C2A—O1A90.8 (3)
C3A—N1A—C1—N1−174.3 (3)C5B—C6B—C7B—C8B0.8 (5)
C1B—N2B—C3B—C2B17.2 (3)C10A—C5A—C4A—C3A83.9 (5)
S1—N2B—C3B—C2B−149.98 (19)C6A—C5A—C4A—C3A−95.7 (4)
C1B—N2B—C3B—C4B−104.3 (3)N1A—C3A—C4A—C5A−67.1 (4)
S1—N2B—C3B—C4B88.5 (2)C2A—C3A—C4A—C5A−177.6 (3)
C5B—C4B—C3B—N2B61.6 (3)C10A—C5A—C6A—C7A−1.1 (6)
C5B—C4B—C3B—C2B−49.9 (3)C4A—C5A—C6A—C7A178.5 (4)
C1—N1A—C3A—C2A−146.0 (3)C5B—C10B—C9B—C8B0.8 (6)
C1A—N1A—C3A—C2A21.9 (3)C6A—C5A—C10A—C9A1.2 (6)
C1—N1A—C3A—C4A96.0 (3)C4A—C5A—C10A—C9A−178.4 (4)
C1A—N1A—C3A—C4A−96.0 (3)C7A—C8A—C9A—C10A0.5 (9)
C1B—O1B—C2B—C3B23.0 (3)C5A—C10A—C9A—C8A−0.9 (7)
N2B—C3B—C2B—O1B−22.9 (3)C6B—C7B—C8B—C9B−1.5 (5)
C4B—C3B—C2B—O1B96.0 (3)C10B—C9B—C8B—C7B0.7 (6)
C10B—C5B—C6B—C7B0.7 (4)C9A—C8A—C7A—C6A−0.4 (9)
C4B—C5B—C6B—C7B−177.1 (3)C5A—C6A—C7A—C8A0.7 (8)
C2A—O1A—C1A—O2A169.2 (3)O3—C1—N1—S112.8 (4)
C2A—O1A—C1A—N1A−12.2 (3)N1A—C1—N1—S1−168.52 (19)
C1—N1A—C1A—O2A−21.2 (5)O2—S1—N1—C155.7 (3)
C3A—N1A—C1A—O2A171.2 (3)O1—S1—N1—C1−173.4 (2)
C1—N1A—C1A—O1A160.3 (3)N2B—S1—N1—C1−57.3 (3)
C3A—N1A—C1A—O1A−7.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2A0.862.072.691 (3)128 (1)
C3B—H3B···O2Ai0.982.583.372 (4)138 (1)
C4B—H42B···O1Bii0.972.483.428 (4)165 (1)

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) −x+3, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2261).

References

  • Adsmond, D. A. & Grant, D. J. W. J. (2001). Pharm. Sci.90, 2058–2077. [PubMed]
  • Beloso, I., Castro, J., Garcia-Vazquesz, J. A., Perez-Lourido, P., Romero, J. & Sousa, A. (2005). Inorg. Chem.44, 336–351. [PubMed]
  • Benali-Cherif, N., Dokhane, S. & Abdaoui, M. (2002). Acta Cryst. E58, o723–o725.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bouasla, R., Berredjem, M., Allaoui, A., Berredjem, H., Lecouvey, M. & Aouf, N. (2010). J. Heterocycl. Chem. In the press.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Cheng, J.-L., Tan, C.-X. & Zhu, G.-N. (2005). Acta Cryst. E61, o3194–o3195.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gayathri, D., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2006). Acta Cryst. E62, o4454–o4455.
  • Kang, M. H. & Reynolds, C. P. (2009). Clin. Cancer Res.15, 1126–1132. [PMC free article] [PubMed]
  • King, R. W. & Burgen, A. S. V. (1976). Proc. R. Soc. London Sect. B, 193, 107–125. [PubMed]
  • Michaux, C., Charlier, C., Julémont, F., Norberg, B., Dogné, J.-M. & Durant, F. (2001). Acta Cryst. E57, o1012–o1013.
  • Naganawa, A., Matsui, T., Ima, M., Yoshida, K., Tsuruta, H., Yamamoto, S., Yamamoto, H., Okada, H., Maruyama, T., Nakai, H., Kondo, K. & Toda, M. (2006). Bioorg. Med. Chem.14, 7774–7789. [PubMed]
  • Nonius (1998). KappaCCD Server Software Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology , Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev.23, 535–558. [PubMed]
  • Yan, X.-W., Hu, M.-L. & Xiong, J. (2007). Acta Cryst. E63, o678–o679.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography