PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1746–o1747.
Published online 2010 June 23. doi:  10.1107/S160053681002324X
PMCID: PMC3007001

(Z)-Ethyl 2-oxo-3-(1,2-dihydroquinolin-2-yl­idene)propano­ate

Abstract

Both independent mol­ecules in the asymmetric unit of the tautomeric title compound, C14H13NO3, a synthetic product obtained from 2-lithio­methyl­quinoline and diethyl oxalate, crystallize in the enaminone form with a Z configuration around the double bond. Intra­molecular N—H(...)O hydrogen bonds occur, generating an S(6) graph-set motif. In the crystal, weak inter­molecular C—H(...)O and π–π stacking inter­actions [centroid–centroid distances = 3.7020 (14)–3.7429 (13)Å] define a three-dimensional supra­molecular network.

Related literature

The enaminone form is predominant in the crystalline state for 2-substituted quinolines, see: Kolehmainen et al. (2000 [triangle]); Loghmani-Khouzani et al. (2006 [triangle]). The enaminone form has been found to be the only tautomeric form present in a chloro­form solution, see: More O’Ferrall & Murray (1994 [triangle]); Greenhill (1990 [triangle]). For the synthesis, see: Kolehmainen et al. (2000 [triangle]); Ośmiałowski et al. (2002 [triangle], 2003 [triangle]). For its melting point, see: Stock et al. (1958 [triangle]); Leonard & Boyer (1950 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For π–π stacking inter­actions, see: Meyer et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1746-scheme1.jpg

Experimental

Crystal data

  • C14H13NO3
  • M r = 243.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1746-efi1.jpg
  • a = 7.8367 (3) Å
  • b = 11.9726 (6) Å
  • c = 25.3156 (13) Å
  • β = 99.019 (3)°
  • V = 2345.89 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 173 K
  • 0.15 × 0.15 × 0.10 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • 12368 measured reflections
  • 4210 independent reflections
  • 2528 reflections with I > 2σ(I)
  • R int = 0.084

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.124
  • S = 1.01
  • 4210 reflections
  • 331 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Bruker, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002324X/jj2040sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002324X/jj2040Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Academy Professor Kari Rissanen and the Academy of Finland (project No. 212588) are thanked for financial support to AV.

supplementary crystallographic information

Comment

In 2-subtituted quinolines, in which the substituent contains a carbonyl group at the β-position, the enaminone form is predominant in the crystalline state, particularily at temperatures far below 0 °C (Kolehmainen et al., 2000; Loghmani-Khouzani et al., 2006). The title compound, (I), C14H13NO3, (Fig. 1) exhibits similar behavior. Early studies were not able to determine whether the enaminone, form (I, Fig. 2) or enol,form ((Z)-ethyl 2-hydroxy-3-(quinolin-2-yl) acrylate (II)), was pesent in a methanol solution (Stock et al., 1958). However, the enaminone form (I) has been found to be the only tautomeric form present in a chloroform solution (More O'Ferrall & Murray, 1994; Greenhill, 1990). Since the enol form, (Z)-ethyl 2-hydroxy-3-(pyridin-2-yl)acrylate (III), was the only tautomer detected in the chloroform solution of a pyridinyl derivative (More O'Ferrall & Murray, 1994), this suggests that benzo-annulation may be responsible for the higher stability of the enaminone form (I) over the enol form (II).

In the title compound, (I), the (Z)-configuration around double bond is observed in each of the two independent molecules in the asymmetric unit (Fig. 1) with only small deviations in the side chain dihedral angles. Intramolecular N—H···O hydrogen bonds (Table 1), generating an S(6) graph set motif (Bernstein et al., 1995) are observed resulting from a (Z) configuration around C2═C11. The double-bonded O atoms are located on the same side of the C—C bond between carbonyl groups (s-cis conformation). Bond distances and angles are in normal ranges (Allen et al., 1987). In addition, weak intermolecular C—H···O interactions (Table 1) as well as π–π stacking interactions with reasonable closest C···C distances (about 3.4 Å, Meyer et al., 2003) are found and contribute to crystal structure stabilization.

Experimental

(Z)-Ethyl 2-oxo-3-(quinolin-2(1H)-ylidene)propanoate was obtained from equimolar starting quantities of 2-lithiomethylquinoline and diethyl oxalate following procedures described (Kolehmainen et al., 2000; Ośmiałowski et al., 2002; Ośmiałowski et al., 2003). The product melts at 132–134 °C (EtOH) [lit. mp 130.8–131.6 °C (Stock et al., 1958); 132 °C (Leonard & Boyer, 1950)]. Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where CDCl3 was used as a solvent.

Refinement

All H atoms were visible in electron density maps, but those bonded to C were calculated at their idealized positions and allowed to ride on their parent atoms at C—H distances of 0.95 Å (aromatic), 0.98 Å (methyl) and 0.99 Å (methylene), with Uiso(H) of 1.2 times Ueq(C) (or 1.5 times Ueq(C) for methyls). The N—H protons were found in the electron density map and were fixed in place by DFIX restraint (s = 0.02) at distances of 0.91 Å from N atoms, and Uiso(H) values of 1.2 times Ueq(N) were used.

Figures

Fig. 1.
View of the asymmetric unit of title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
Fig. 2.
Chemical formula and structural diagrams for (Z)-Ethyl 2-oxo-3-(quinolin-2(1H)-ylidene)propanoate (I), (Z)-ethyl 2-hydroxy-3-(quinolin-2-yl)acrylate (II) and (Z)-ethyl 2-hydroxy-3-(pyridin-2-yl)acrylate (III).
Fig. 3.
Packing diagram of the title compound showing the non-covalent N—H···O and C—H···O interactions.

Crystal data

C14H13NO3F(000) = 1024
Mr = 243.25Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6418 reflections
a = 7.8367 (3) Åθ = 0.4–26.0°
b = 11.9726 (6) ŵ = 0.10 mm1
c = 25.3156 (13) ÅT = 173 K
β = 99.019 (3)°Block, orange
V = 2345.89 (19) Å30.15 × 0.15 × 0.10 mm
Z = 8

Data collection

Bruker–Nonius KappaCCD diffractometer2528 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
graphiteθmax = 25.3°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = −8→9
[var phi] and ω scansk = −14→14
12368 measured reflectionsl = −28→30
4210 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0505P)2 + 0.2151P] where P = (Fo2 + 2Fc2)/3
4210 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.19 e Å3
2 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O120.48192 (19)0.58816 (12)0.21420 (6)0.0317 (4)
O130.3793 (2)0.59651 (14)0.10532 (7)0.0421 (5)
O140.32200 (19)0.77845 (12)0.11502 (6)0.0312 (4)
N10.6755 (2)0.68740 (15)0.29211 (8)0.0258 (5)
H10.614 (3)0.6287 (15)0.2746 (9)0.031*
C20.6575 (3)0.78169 (18)0.26243 (9)0.0249 (5)
C30.7474 (3)0.87881 (18)0.28434 (9)0.0269 (5)
H30.73780.94650.26450.032*
C40.8464 (3)0.87531 (18)0.33324 (9)0.0287 (6)
H40.90370.94100.34760.034*
C50.9698 (3)0.76496 (19)0.41398 (9)0.0292 (6)
H51.03060.82850.42960.035*
C60.9840 (3)0.6654 (2)0.44071 (10)0.0337 (6)
H61.05580.65980.47450.040*
C70.8932 (3)0.57168 (19)0.41838 (10)0.0335 (6)
H70.90260.50320.43760.040*
C80.7908 (3)0.57718 (19)0.36916 (9)0.0293 (6)
H80.72980.51320.35420.035*
C90.7778 (3)0.67895 (18)0.34137 (9)0.0239 (5)
C100.8656 (3)0.77435 (18)0.36343 (9)0.0239 (5)
C110.5546 (3)0.77913 (18)0.21150 (9)0.0268 (6)
H110.53800.84600.19110.032*
C120.4772 (3)0.68116 (19)0.19047 (9)0.0268 (5)
C130.3875 (3)0.67949 (19)0.13238 (9)0.0274 (6)
C150.2399 (3)0.7798 (2)0.05944 (9)0.0368 (6)
H15A0.14820.72230.05330.044*
H15B0.32600.76390.03570.044*
C160.1634 (3)0.8941 (2)0.04784 (11)0.0440 (7)
H16A0.10690.89770.01050.066*
H16B0.25520.95040.05400.066*
H16C0.07810.90890.07150.066*
O12A0.53371 (19)0.35331 (12)0.32136 (6)0.0321 (4)
O13A0.7560 (2)0.31949 (14)0.41590 (7)0.0503 (5)
O14A0.67498 (19)0.14041 (13)0.41249 (6)0.0329 (4)
N1A0.3651 (2)0.25757 (16)0.23504 (7)0.0252 (5)
H1A0.408 (3)0.3175 (15)0.2546 (8)0.030*
C2A0.4166 (3)0.15861 (18)0.25803 (9)0.0244 (5)
C3A0.3623 (3)0.05969 (18)0.22881 (9)0.0280 (5)
H3A0.3991−0.01110.24330.034*
C4A0.2594 (3)0.06522 (19)0.18088 (9)0.0291 (6)
H4A0.2233−0.00180.16230.035*
C5A0.0960 (3)0.1818 (2)0.10830 (9)0.0302 (6)
H5A0.05520.11700.08860.036*
C6A0.0484 (3)0.2854 (2)0.08803 (10)0.0325 (6)
H6A−0.02770.29200.05500.039*
C7A0.1120 (3)0.38156 (19)0.11605 (9)0.0320 (6)
H7A0.08120.45320.10140.038*
C8A0.2188 (3)0.37321 (18)0.16452 (9)0.0288 (6)
H8A0.26260.43850.18320.035*
C9A0.2620 (3)0.26763 (18)0.18590 (9)0.0237 (5)
C10A0.2041 (3)0.17018 (18)0.15768 (9)0.0242 (5)
C11A0.5169 (3)0.15734 (19)0.30907 (9)0.0269 (5)
H11A0.55090.08730.32500.032*
C12A0.5685 (3)0.25474 (18)0.33731 (9)0.0261 (5)
C13A0.6777 (3)0.24376 (19)0.39235 (10)0.0292 (6)
C15A0.7745 (3)0.12443 (19)0.46547 (9)0.0333 (6)
H15C0.73260.17530.49150.040*
H15D0.89810.14040.46490.040*
C16A0.7511 (3)0.0051 (2)0.48090 (10)0.0416 (7)
H16D0.8166−0.00880.51660.062*
H16E0.7933−0.04440.45490.062*
H16F0.6283−0.00960.48130.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O120.0432 (10)0.0213 (9)0.0289 (10)−0.0031 (7)0.0007 (7)−0.0004 (8)
O130.0670 (12)0.0272 (10)0.0301 (11)0.0047 (8)0.0012 (9)−0.0086 (8)
O140.0386 (9)0.0263 (9)0.0260 (10)0.0032 (7)−0.0032 (7)−0.0021 (7)
N10.0286 (10)0.0194 (11)0.0290 (12)−0.0041 (8)0.0038 (9)−0.0044 (9)
C20.0268 (12)0.0195 (13)0.0299 (14)0.0006 (9)0.0093 (10)−0.0025 (10)
C30.0329 (13)0.0161 (12)0.0322 (14)−0.0017 (10)0.0062 (10)0.0007 (10)
C40.0324 (13)0.0216 (13)0.0326 (15)−0.0031 (10)0.0065 (11)−0.0062 (11)
C50.0315 (13)0.0269 (14)0.0288 (14)−0.0041 (10)0.0038 (10)−0.0068 (11)
C60.0376 (14)0.0344 (15)0.0283 (15)−0.0009 (11)0.0026 (11)0.0000 (12)
C70.0410 (14)0.0273 (14)0.0329 (15)−0.0010 (11)0.0083 (11)0.0051 (12)
C80.0325 (13)0.0245 (13)0.0315 (15)−0.0015 (10)0.0072 (10)−0.0025 (11)
C90.0247 (11)0.0244 (13)0.0236 (13)0.0011 (9)0.0066 (9)−0.0026 (11)
C100.0238 (11)0.0233 (13)0.0257 (14)−0.0013 (9)0.0075 (10)−0.0021 (10)
C110.0321 (12)0.0201 (13)0.0278 (14)0.0014 (10)0.0032 (10)−0.0007 (10)
C120.0284 (12)0.0249 (14)0.0278 (14)0.0024 (10)0.0065 (10)−0.0018 (11)
C130.0315 (13)0.0228 (13)0.0285 (14)0.0000 (10)0.0063 (10)−0.0011 (11)
C150.0466 (15)0.0375 (15)0.0237 (14)0.0065 (12)−0.0019 (11)−0.0029 (12)
C160.0548 (17)0.0366 (16)0.0371 (16)0.0038 (13)−0.0035 (13)0.0012 (13)
O12A0.0420 (9)0.0223 (9)0.0301 (10)0.0008 (7)−0.0001 (7)0.0032 (8)
O13A0.0767 (13)0.0298 (10)0.0369 (12)−0.0185 (9)−0.0147 (10)0.0029 (9)
O14A0.0446 (10)0.0260 (10)0.0241 (10)−0.0024 (7)−0.0072 (7)0.0031 (7)
N1A0.0299 (11)0.0231 (11)0.0218 (11)−0.0021 (8)0.0019 (8)−0.0017 (9)
C2A0.0285 (12)0.0220 (13)0.0237 (13)−0.0001 (10)0.0080 (10)0.0012 (10)
C3A0.0379 (13)0.0195 (13)0.0274 (14)−0.0002 (10)0.0081 (10)−0.0001 (11)
C4A0.0352 (13)0.0238 (13)0.0287 (14)−0.0055 (10)0.0061 (10)−0.0044 (11)
C5A0.0281 (12)0.0332 (15)0.0285 (14)−0.0037 (10)0.0024 (10)−0.0057 (11)
C6A0.0313 (13)0.0353 (15)0.0285 (14)0.0024 (11)−0.0026 (10)−0.0032 (12)
C7A0.0378 (14)0.0252 (14)0.0314 (15)0.0054 (11)0.0001 (11)0.0033 (11)
C8A0.0333 (13)0.0233 (13)0.0287 (14)0.0008 (10)0.0015 (10)−0.0036 (11)
C9A0.0224 (12)0.0252 (13)0.0241 (13)−0.0009 (9)0.0056 (9)0.0015 (10)
C10A0.0229 (11)0.0244 (13)0.0260 (14)−0.0023 (9)0.0061 (10)−0.0034 (10)
C11A0.0364 (13)0.0207 (13)0.0232 (13)0.0005 (10)0.0032 (10)0.0018 (10)
C12A0.0308 (13)0.0231 (13)0.0243 (13)−0.0001 (10)0.0040 (10)0.0013 (11)
C13A0.0385 (14)0.0225 (13)0.0268 (14)−0.0017 (11)0.0054 (10)0.0029 (11)
C15A0.0407 (14)0.0339 (15)0.0217 (14)−0.0022 (11)−0.0062 (10)0.0025 (11)
C16A0.0559 (17)0.0354 (15)0.0291 (15)0.0009 (12)−0.0065 (12)0.0053 (12)

Geometric parameters (Å, °)

O12—C121.263 (3)O12A—C12A1.263 (3)
O13—C131.203 (3)O13A—C13A1.199 (3)
O14—C131.338 (3)O14A—C13A1.340 (3)
O14—C151.453 (3)O14A—C15A1.454 (2)
N1—C21.351 (3)N1A—C2A1.353 (3)
N1—C91.376 (3)N1A—C9A1.378 (3)
N1—H10.924 (15)N1A—H1A0.905 (15)
C2—C111.410 (3)C2A—C11A1.403 (3)
C2—C31.426 (3)C2A—C3A1.426 (3)
C3—C41.355 (3)C3A—C4A1.349 (3)
C3—H30.9500C3A—H3A0.9500
C4—C101.425 (3)C4A—C10A1.426 (3)
C4—H40.9500C4A—H4A0.9500
C5—C61.367 (3)C5A—C6A1.371 (3)
C5—C101.410 (3)C5A—C10A1.403 (3)
C5—H50.9500C5A—H5A0.9500
C6—C71.400 (3)C6A—C7A1.403 (3)
C6—H60.9500C6A—H6A0.9500
C7—C81.374 (3)C7A—C8A1.376 (3)
C7—H70.9500C7A—H7A0.9500
C8—C91.403 (3)C8A—C9A1.396 (3)
C8—H80.9500C8A—H8A0.9500
C9—C101.403 (3)C9A—C10A1.406 (3)
C11—C121.388 (3)C11A—C12A1.394 (3)
C11—H110.9500C11A—H11A0.9500
C12—C131.528 (3)C12A—C13A1.523 (3)
C15—C161.505 (3)C15A—C16A1.500 (3)
C15—H15A0.9900C15A—H15C0.9900
C15—H15B0.9900C15A—H15D0.9900
C16—H16A0.9800C16A—H16D0.9800
C16—H16B0.9800C16A—H16E0.9800
C16—H16C0.9800C16A—H16F0.9800
C13—O14—C15114.65 (17)C13A—O14A—C15A115.73 (17)
C2—N1—C9124.10 (19)C2A—N1A—C9A123.90 (19)
C2—N1—H1111.6 (14)C2A—N1A—H1A113.6 (14)
C9—N1—H1124.3 (14)C9A—N1A—H1A122.5 (14)
N1—C2—C11119.05 (19)N1A—C2A—C11A119.5 (2)
N1—C2—C3117.6 (2)N1A—C2A—C3A117.3 (2)
C11—C2—C3123.4 (2)C11A—C2A—C3A123.2 (2)
C4—C3—C2120.5 (2)C4A—C3A—C2A120.9 (2)
C4—C3—H3119.8C4A—C3A—H3A119.5
C2—C3—H3119.8C2A—C3A—H3A119.5
C3—C4—C10120.9 (2)C3A—C4A—C10A120.9 (2)
C3—C4—H4119.6C3A—C4A—H4A119.5
C10—C4—H4119.6C10A—C4A—H4A119.5
C6—C5—C10120.6 (2)C6A—C5A—C10A121.0 (2)
C6—C5—H5119.7C6A—C5A—H5A119.5
C10—C5—H5119.7C10A—C5A—H5A119.5
C5—C6—C7120.2 (2)C5A—C6A—C7A119.9 (2)
C5—C6—H6119.9C5A—C6A—H6A120.0
C7—C6—H6119.9C7A—C6A—H6A120.0
C8—C7—C6121.0 (2)C8A—C7A—C6A120.7 (2)
C8—C7—H7119.5C8A—C7A—H7A119.7
C6—C7—H7119.5C6A—C7A—H7A119.7
C7—C8—C9118.9 (2)C7A—C8A—C9A119.2 (2)
C7—C8—H8120.6C7A—C8A—H8A120.4
C9—C8—H8120.6C9A—C8A—H8A120.4
N1—C9—C8120.3 (2)N1A—C9A—C8A120.1 (2)
N1—C9—C10118.7 (2)N1A—C9A—C10A118.89 (19)
C8—C9—C10121.0 (2)C8A—C9A—C10A121.0 (2)
C9—C10—C5118.3 (2)C5A—C10A—C9A118.2 (2)
C9—C10—C4118.2 (2)C5A—C10A—C4A123.8 (2)
C5—C10—C4123.5 (2)C9A—C10A—C4A117.98 (19)
C12—C11—C2121.5 (2)C12A—C11A—C2A122.6 (2)
C12—C11—H11119.3C12A—C11A—H11A118.7
C2—C11—H11119.3C2A—C11A—H11A118.7
O12—C12—C11125.8 (2)O12A—C12A—C11A125.9 (2)
O12—C12—C13114.90 (19)O12A—C12A—C13A115.81 (19)
C11—C12—C13119.2 (2)C11A—C12A—C13A118.2 (2)
O13—C13—O14124.1 (2)O13A—C13A—O14A123.1 (2)
O13—C13—C12122.3 (2)O13A—C13A—C12A124.1 (2)
O14—C13—C12113.55 (19)O14A—C13A—C12A112.81 (18)
O14—C15—C16107.56 (19)O14A—C15A—C16A107.21 (18)
O14—C15—H15A110.2O14A—C15A—H15C110.3
C16—C15—H15A110.2C16A—C15A—H15C110.3
O14—C15—H15B110.2O14A—C15A—H15D110.3
C16—C15—H15B110.2C16A—C15A—H15D110.3
H15A—C15—H15B108.5H15C—C15A—H15D108.5
C15—C16—H16A109.5C15A—C16A—H16D109.5
C15—C16—H16B109.5C15A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C15—C16—H16C109.5C15A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
C9—N1—C2—C11177.4 (2)C9A—N1A—C2A—C11A−177.9 (2)
C9—N1—C2—C3−1.5 (3)C9A—N1A—C2A—C3A1.0 (3)
N1—C2—C3—C4−0.2 (3)N1A—C2A—C3A—C4A−1.9 (3)
C11—C2—C3—C4−179.0 (2)C11A—C2A—C3A—C4A177.0 (2)
C2—C3—C4—C101.2 (4)C2A—C3A—C4A—C10A1.0 (3)
C10—C5—C6—C7−0.8 (4)C10A—C5A—C6A—C7A1.9 (4)
C5—C6—C7—C81.0 (4)C5A—C6A—C7A—C8A−1.6 (4)
C6—C7—C8—C9−0.2 (4)C6A—C7A—C8A—C9A−0.6 (4)
C2—N1—C9—C8−179.1 (2)C2A—N1A—C9A—C8A−178.3 (2)
C2—N1—C9—C102.0 (3)C2A—N1A—C9A—C10A0.8 (3)
C7—C8—C9—N1−179.7 (2)C7A—C8A—C9A—N1A−178.3 (2)
C7—C8—C9—C10−0.8 (3)C7A—C8A—C9A—C10A2.7 (3)
N1—C9—C10—C5179.9 (2)C6A—C5A—C10A—C9A0.1 (3)
C8—C9—C10—C51.0 (3)C6A—C5A—C10A—C4A−179.6 (2)
N1—C9—C10—C4−0.9 (3)N1A—C9A—C10A—C5A178.5 (2)
C8—C9—C10—C4−179.7 (2)C8A—C9A—C10A—C5A−2.4 (3)
C6—C5—C10—C9−0.2 (3)N1A—C9A—C10A—C4A−1.7 (3)
C6—C5—C10—C4−179.4 (2)C8A—C9A—C10A—C4A177.3 (2)
C3—C4—C10—C9−0.7 (3)C3A—C4A—C10A—C5A−179.4 (2)
C3—C4—C10—C5178.6 (2)C3A—C4A—C10A—C9A0.9 (3)
N1—C2—C11—C12−2.5 (3)N1A—C2A—C11A—C12A−0.9 (3)
C3—C2—C11—C12176.3 (2)C3A—C2A—C11A—C12A−179.7 (2)
C2—C11—C12—O123.6 (4)C2A—C11A—C12A—O12A−0.2 (4)
C2—C11—C12—C13−171.9 (2)C2A—C11A—C12A—C13A−179.8 (2)
C15—O14—C13—O13−0.9 (3)C15A—O14A—C13A—O13A−0.2 (3)
C15—O14—C13—C12178.48 (19)C15A—O14A—C13A—C12A−179.0 (2)
O12—C12—C13—O13−26.2 (3)O12A—C12A—C13A—O13A−14.1 (4)
C11—C12—C13—O13149.7 (2)C11A—C12A—C13A—O13A165.5 (2)
O12—C12—C13—O14154.39 (19)O12A—C12A—C13A—O14A164.6 (2)
C11—C12—C13—O14−29.7 (3)C11A—C12A—C13A—O14A−15.7 (3)
C13—O14—C15—C16176.16 (19)C13A—O14A—C15A—C16A178.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O120.92 (2)1.78 (2)2.582 (2)144 (2)
N1A—H1A···O12A0.91 (2)1.87 (2)2.633 (2)141 (2)
C7—H7···O13A0.952.503.203 (3)131
C8—H8···O12A0.952.513.456 (3)172
C8A—H8A···O120.952.523.412 (3)156
C16A—H16D···O13i0.982.463.379 (3)156

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2040).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2002). COLLECT Bruker AXS, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Greenhill, J. V. (1990). The Chemistry of Heterocyclic Compounds, Quinolines, Part 3, edited by G. Jones, pp. 247–248. Chichester: Wiley.
  • Kolehmainen, E., Ośmiałowski, B., Krygowski, T. M., Kauppinen, R., Nissinen, M. & Gawinecki, R. (2000). J. Chem. Soc. Perkin Trans. 2, pp. 1259–1266.
  • Leonard, N. J. & Boyer, J. H. (1950). J. Am. Chem. Soc.72, 2980–2985.
  • Loghmani-Khouzani, H., Ośmiałowski, B., Gawinecki, R., Kolehmainen, E., Harrington, R. W. & Clegg, W. (2006). J. Iran. Chem. Soc.3, 173–179.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed.42, 1210–1250. [PubMed]
  • More O’Ferrall, R. A. & Murray, B. A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2461–2470.
  • Ośmiałowski, B., Kolehmainen, E. & Gawinecki, R. (2003). Chem. Eur. J.9, 2710–2716. [PubMed]
  • Ośmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M. & Gawinecki, R. (2002). J. Org. Chem.67, 3339–3345. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stock, A. M., Donahue, W. E. & Amstutz, E. D. (1958). J. Org. Chem.23, 1840–1848.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography