PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1788–o1789.
Published online 2010 June 26. doi:  10.1107/S1600536810023627
PMCID: PMC3007000

3-{2-[2-(Diphenyl­methyl­ene)hydrazin­yl]thia­zol-4-yl}-2H-chromen-2-one

Abstract

In the title compound, C25H17N3O2S, the coumarin ring system is essentially planar with a maximum deviation of 0.019 (2) Å. A weak intra­molecular C—H(...)O hydrogen bond stabilizes the mol­ecular structure, so that the coumarin plane is approximately coplanar with the thia­zole ring, making a dihedral angle of 2.5 (10)°. The two phenyl rings are nearly perpendicular to each other, with a dihedral angle of 81.44 (12)°. In the crystal structure, the mol­ecules are linked into an infinite chain along the b axis by inter­molecular C—H(...)O hydrogen bonds. Weak C—H(...)π inter­actions are observed between the chains.

Related literature

For applications of coumarin derivatives, see: Tassies et al. (2002 [triangle]); Laffitte et al. (2002 [triangle]); Weber et al. (1998 [triangle]); Finn et al. (2004 [triangle]); Kimura et al. (1985 [triangle]). For applications of amino­thia­zoles derivatives, see: Hiremath et al. (1992 [triangle]); Karah et al. (1998 [triangle]); Jayashree et al. (2005 [triangle]). For related structures, see: Arshad, Osman, Chan et al. (2010a [triangle],b [triangle]); Arshad, Osman, Lam et al. (2010 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]). The syntheses of benzophenone thio­semicarbazone and 3-(ω-bromo­acet­yl)coumarin are described by Lobana et al. (2006 [triangle]) and Siddiqui et al. (2009 [triangle]), respectively.

An external file that holds a picture, illustration, etc.
Object name is e-66-o1788-scheme1.jpg

Experimental

Crystal data

  • C25H17N3O2S
  • M r = 423.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1788-efi1.jpg
  • a = 13.8705 (18) Å
  • b = 12.9101 (17) Å
  • c = 11.8534 (16) Å
  • β = 107.563 (2)°
  • V = 2023.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 100 K
  • 0.28 × 0.13 × 0.04 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.949, T max = 0.993
  • 17920 measured reflections
  • 4181 independent reflections
  • 2909 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.125
  • S = 1.04
  • 4181 reflections
  • 284 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810023627/is2564sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023627/is2564Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AA, HO and KLC thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant (RU/1001/PKIMIA/811133) to conduct this work. AA thanks the Pakistan Government and PCSIR for financial scholarship support. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Coumarin derivatives having pronounced biological activities are used as anticoagulants (Tassies et al., 2002), antibacterial (Laffitte et al., 2002), cytotoxic (Weber et al., 1998), free radical scavengers (Finn et al., 2004) and enzyme inhibiting (Kimura et al., 1985) agents. Moreover, aminothiazoles derivatives have been reported to exhibit significant antifungal (Hiremath et al., 1992), anti-tuberculosis (Karah et al., 1998) and anti-inflammatory (Jayashree et al., 2005) activities. The title compound is a new coumarinyl thiazolyl hydrazone derivative. We present here its crystal structure.

The geometry parameters of the title compound (Fig. 1) are comparable to those related structures (Arshad, Osman, Chan et al., 2010a,b; Arshad, Osman, Lam et al., 2010). The coumarin group is essentially planar (O1/C1–C9) with a maximum derivation of 0.019 Å at atom C7. The mean plane is approximately coplanar with the thiazole ring (C10–C11–S1–C12–N1) with a dihedral angle being 2.5 (10)°. The other two benzene rings are nearly perpendicular to each other with a dihedral angle being 81.44 (12)°.

In the crystal structure, the molecules are linked into infinite chains along b axis by the intermolecular C6—H6A···O1 hydrogen bonds and stabilized by the weak C—H···π interactions (Fig. 2, Table 1). A weak intramolecular C11—H11A···O2 hydrogen bond stabilizes the molecular structure.

Experimental

Benzophenone thiosemicarbazone (Lobana et al., 2006) and 3-(ω-bromoacetyl)coumarin (Siddiqui et al., 2009) were synthesized as reported in the literature. A solution of 3-(ω-bromoacetyl)coumarin (2.5 mmol) and benzophenone thiosemicarbazone (2.5 mmol) in chloroform-ethanol (2:1) was refluxed for 1 h. Precipitates formed were filtered and boiled with water containing sodium acetate. The title compound was purified by recrystallization with ethanol-chloroform (1:3) as dark brown feather-like crystals.

Refinement

H1N2 hydrogen atom was located in a difference Fourier map and was refined freely. The rest of H atoms were positioned geometrically (C–H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound, viewed down the b axis, showing the molecules are linked into chains along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C25H17N3O2SF(000) = 880
Mr = 423.48Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2695 reflections
a = 13.8705 (18) Åθ = 2.2–25.7°
b = 12.9101 (17) ŵ = 0.19 mm1
c = 11.8534 (16) ÅT = 100 K
β = 107.563 (2)°Plate, brown
V = 2023.6 (5) Å30.28 × 0.13 × 0.04 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer4181 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −17→17
Tmin = 0.949, Tmax = 0.993k = −16→16
17920 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0488P)2 + 1.1918P] where P = (Fo2 + 2Fc2)/3
4181 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.27268 (5)0.29137 (5)0.91250 (6)0.02688 (18)
O10.03690 (14)0.49303 (13)1.21227 (16)0.0322 (5)
O20.12420 (15)0.53063 (13)1.09019 (17)0.0375 (5)
N10.18366 (15)0.20621 (15)1.05262 (17)0.0216 (4)
N20.25985 (16)0.08768 (16)0.95524 (19)0.0257 (5)
N30.32315 (15)0.07961 (15)0.88597 (17)0.0230 (5)
C10.09314 (19)0.46244 (19)1.1393 (2)0.0267 (6)
C2−0.00360 (19)0.42446 (19)1.2744 (2)0.0265 (6)
C3−0.0574 (2)0.4642 (2)1.3458 (3)0.0377 (7)
H3A−0.06720.53521.34990.045*
C4−0.0961 (2)0.3960 (2)1.4110 (3)0.0355 (7)
H4A−0.13130.42181.46040.043*
C5−0.08363 (19)0.2904 (2)1.4042 (2)0.0274 (6)
H5A−0.11040.24561.44850.033*
C6−0.03123 (17)0.25172 (19)1.3315 (2)0.0225 (5)
H6A−0.02310.18051.32660.027*
C70.00990 (17)0.31838 (18)1.2649 (2)0.0209 (5)
C80.06701 (18)0.28439 (18)1.1895 (2)0.0213 (5)
H8A0.07600.21371.18170.026*
C90.10832 (17)0.35054 (18)1.1294 (2)0.0212 (5)
C100.16787 (18)0.31334 (18)1.0546 (2)0.0209 (5)
C110.20939 (19)0.37041 (19)0.9838 (2)0.0268 (6)
H11A0.20420.44200.97530.032*
C120.23598 (18)0.18608 (18)0.9809 (2)0.0225 (5)
C130.35407 (18)−0.01140 (18)0.8675 (2)0.0210 (5)
C140.42271 (18)−0.01483 (18)0.7927 (2)0.0213 (5)
C150.42459 (18)0.06486 (19)0.7143 (2)0.0232 (5)
H15A0.37840.11890.70370.028*
C160.49430 (19)0.0646 (2)0.6520 (2)0.0261 (6)
H16A0.49490.11840.60000.031*
C170.5631 (2)−0.0155 (2)0.6670 (2)0.0288 (6)
H17A0.6097−0.01560.62470.035*
C180.56302 (19)−0.0957 (2)0.7446 (2)0.0284 (6)
H18A0.6098−0.14920.75490.034*
C190.49287 (18)−0.09584 (19)0.8069 (2)0.0237 (5)
H19A0.4923−0.15000.85850.028*
C200.33051 (17)−0.11039 (18)0.9191 (2)0.0210 (5)
C210.36721 (19)−0.12891 (19)1.0402 (2)0.0268 (6)
H21A0.4018−0.07701.09070.032*
C220.3526 (2)−0.2240 (2)1.0859 (2)0.0288 (6)
H22A0.3778−0.23601.16690.035*
C230.30028 (19)−0.3019 (2)1.0112 (2)0.0273 (6)
H23A0.2916−0.36641.04170.033*
C240.26132 (19)−0.28293 (19)0.8913 (2)0.0282 (6)
H24A0.2250−0.33420.84110.034*
C250.27632 (18)−0.18767 (19)0.8457 (2)0.0238 (5)
H25A0.2498−0.17530.76490.029*
H1N20.2549 (19)0.034 (2)1.003 (2)0.027 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0327 (4)0.0239 (3)0.0311 (4)−0.0054 (3)0.0203 (3)−0.0020 (3)
O10.0445 (11)0.0185 (9)0.0433 (11)0.0005 (8)0.0277 (10)−0.0013 (8)
O20.0531 (13)0.0196 (9)0.0524 (12)−0.0013 (9)0.0350 (11)0.0020 (9)
N10.0227 (10)0.0206 (10)0.0244 (11)0.0010 (9)0.0116 (9)−0.0006 (9)
N20.0305 (12)0.0211 (11)0.0344 (12)0.0012 (9)0.0230 (11)0.0009 (10)
N30.0245 (11)0.0237 (11)0.0260 (11)−0.0008 (9)0.0153 (10)−0.0015 (9)
C10.0319 (14)0.0208 (13)0.0312 (14)0.0010 (11)0.0153 (13)−0.0020 (11)
C20.0302 (14)0.0219 (13)0.0313 (14)−0.0006 (11)0.0153 (12)0.0014 (11)
C30.0533 (19)0.0200 (13)0.0517 (18)0.0034 (13)0.0336 (16)−0.0029 (13)
C40.0405 (16)0.0312 (15)0.0456 (17)0.0047 (12)0.0292 (15)−0.0048 (13)
C50.0262 (13)0.0299 (14)0.0304 (14)−0.0022 (11)0.0150 (12)0.0003 (11)
C60.0223 (12)0.0202 (12)0.0254 (13)−0.0009 (10)0.0077 (11)−0.0005 (10)
C70.0182 (12)0.0224 (13)0.0211 (12)−0.0005 (10)0.0046 (10)−0.0008 (10)
C80.0208 (12)0.0188 (12)0.0227 (12)0.0003 (10)0.0044 (11)−0.0027 (10)
C90.0184 (12)0.0222 (13)0.0220 (12)−0.0015 (10)0.0048 (11)−0.0036 (10)
C100.0217 (12)0.0184 (12)0.0241 (12)−0.0017 (10)0.0091 (11)−0.0020 (10)
C110.0329 (14)0.0202 (13)0.0321 (14)−0.0029 (11)0.0172 (13)−0.0030 (11)
C120.0224 (13)0.0215 (13)0.0262 (13)−0.0012 (10)0.0113 (11)−0.0002 (10)
C130.0209 (12)0.0231 (13)0.0210 (12)−0.0017 (10)0.0094 (11)−0.0010 (10)
C140.0237 (13)0.0222 (13)0.0205 (12)−0.0039 (10)0.0106 (11)−0.0051 (10)
C150.0230 (13)0.0269 (13)0.0182 (12)0.0006 (11)0.0040 (11)−0.0019 (10)
C160.0301 (14)0.0316 (14)0.0182 (13)−0.0013 (11)0.0096 (12)0.0012 (11)
C170.0310 (14)0.0332 (15)0.0287 (14)−0.0007 (12)0.0189 (13)−0.0057 (12)
C180.0296 (14)0.0305 (14)0.0298 (14)0.0035 (11)0.0161 (13)−0.0047 (11)
C190.0263 (13)0.0237 (13)0.0240 (13)−0.0030 (10)0.0119 (12)−0.0039 (10)
C200.0196 (12)0.0209 (12)0.0269 (13)0.0007 (10)0.0137 (11)−0.0015 (10)
C210.0285 (14)0.0250 (13)0.0283 (14)−0.0027 (11)0.0106 (12)−0.0017 (11)
C220.0309 (14)0.0321 (15)0.0223 (13)0.0011 (11)0.0062 (12)0.0043 (11)
C230.0279 (14)0.0249 (13)0.0311 (14)−0.0021 (11)0.0120 (12)0.0040 (11)
C240.0296 (14)0.0256 (14)0.0312 (15)−0.0059 (11)0.0119 (12)−0.0043 (11)
C250.0227 (13)0.0306 (14)0.0174 (12)−0.0039 (11)0.0052 (11)−0.0025 (10)

Geometric parameters (Å, °)

S1—C111.724 (2)C10—C111.368 (3)
S1—C121.736 (2)C11—H11A0.9300
O1—C21.375 (3)C13—C141.485 (3)
O1—C11.386 (3)C13—C201.495 (3)
O2—C11.205 (3)C14—C151.392 (3)
N1—C121.300 (3)C14—C191.404 (3)
N1—C101.402 (3)C15—C161.382 (3)
N2—C121.370 (3)C15—H15A0.9300
N2—N31.375 (2)C16—C171.382 (3)
N2—H1N20.91 (3)C16—H16A0.9300
N3—C131.292 (3)C17—C181.385 (3)
C1—C91.470 (3)C17—H17A0.9300
C2—C31.385 (3)C18—C191.388 (3)
C2—C71.391 (3)C18—H18A0.9300
C3—C41.382 (4)C19—H19A0.9300
C3—H3A0.9300C20—C251.387 (3)
C4—C51.380 (4)C20—C211.391 (3)
C4—H4A0.9300C21—C221.382 (3)
C5—C61.378 (3)C21—H21A0.9300
C5—H5A0.9300C22—C231.391 (4)
C6—C71.400 (3)C22—H22A0.9300
C6—H6A0.9300C23—C241.382 (4)
C7—C81.430 (3)C23—H23A0.9300
C8—C91.346 (3)C24—C251.384 (3)
C8—H8A0.9300C24—H24A0.9300
C9—C101.464 (3)C25—H25A0.9300
C11—S1—C1288.29 (11)N1—C12—S1116.69 (18)
C2—O1—C1123.27 (19)N2—C12—S1119.88 (16)
C12—N1—C10109.20 (19)N3—C13—C14115.7 (2)
C12—N2—N3116.31 (19)N3—C13—C20125.68 (19)
C12—N2—H1N2119.7 (16)C14—C13—C20118.54 (19)
N3—N2—H1N2119.8 (16)C15—C14—C19118.6 (2)
C13—N3—N2118.33 (19)C15—C14—C13121.4 (2)
O2—C1—O1116.4 (2)C19—C14—C13119.8 (2)
O2—C1—C9126.8 (2)C16—C15—C14120.8 (2)
O1—C1—C9116.8 (2)C16—C15—H15A119.6
O1—C2—C3118.1 (2)C14—C15—H15A119.6
O1—C2—C7120.3 (2)C17—C16—C15120.0 (2)
C3—C2—C7121.6 (2)C17—C16—H16A120.0
C4—C3—C2118.5 (2)C15—C16—H16A120.0
C4—C3—H3A120.7C16—C17—C18120.4 (2)
C2—C3—H3A120.7C16—C17—H17A119.8
C5—C4—C3121.3 (2)C18—C17—H17A119.8
C5—C4—H4A119.3C17—C18—C19119.7 (2)
C3—C4—H4A119.3C17—C18—H18A120.1
C6—C5—C4119.6 (2)C19—C18—H18A120.1
C6—C5—H5A120.2C18—C19—C14120.5 (2)
C4—C5—H5A120.2C18—C19—H19A119.8
C5—C6—C7120.8 (2)C14—C19—H19A119.8
C5—C6—H6A119.6C25—C20—C21119.0 (2)
C7—C6—H6A119.6C25—C20—C13120.1 (2)
C2—C7—C6118.2 (2)C21—C20—C13120.8 (2)
C2—C7—C8117.8 (2)C22—C21—C20120.4 (2)
C6—C7—C8124.1 (2)C22—C21—H21A119.8
C9—C8—C7122.7 (2)C20—C21—H21A119.8
C9—C8—H8A118.6C21—C22—C23120.2 (2)
C7—C8—H8A118.6C21—C22—H22A119.9
C8—C9—C10121.4 (2)C23—C22—H22A119.9
C8—C9—C1119.2 (2)C24—C23—C22119.6 (2)
C10—C9—C1119.4 (2)C24—C23—H23A120.2
C11—C10—N1115.1 (2)C22—C23—H23A120.2
C11—C10—C9127.9 (2)C23—C24—C25120.1 (2)
N1—C10—C9116.96 (19)C23—C24—H24A120.0
C10—C11—S1110.66 (18)C25—C24—H24A120.0
C10—C11—H11A124.7C24—C25—C20120.7 (2)
S1—C11—H11A124.7C24—C25—H25A119.6
N1—C12—N2123.4 (2)C20—C25—H25A119.6
C12—N2—N3—C13174.6 (2)C10—N1—C12—N2−176.8 (2)
C2—O1—C1—O2−179.9 (2)C10—N1—C12—S11.2 (3)
C2—O1—C1—C90.3 (4)N3—N2—C12—N1−174.4 (2)
C1—O1—C2—C3179.2 (3)N3—N2—C12—S17.6 (3)
C1—O1—C2—C7−0.7 (4)C11—S1—C12—N1−1.5 (2)
O1—C2—C3—C4−178.3 (3)C11—S1—C12—N2176.6 (2)
C7—C2—C3—C41.6 (4)N2—N3—C13—C14−179.6 (2)
C2—C3—C4—C5−1.1 (5)N2—N3—C13—C20−2.6 (4)
C3—C4—C5—C60.2 (4)N3—C13—C14—C15−22.3 (3)
C4—C5—C6—C70.3 (4)C20—C13—C14—C15160.5 (2)
O1—C2—C7—C6178.9 (2)N3—C13—C14—C19152.8 (2)
C3—C2—C7—C6−1.0 (4)C20—C13—C14—C19−24.5 (3)
O1—C2—C7—C80.2 (4)C19—C14—C15—C16−0.2 (4)
C3—C2—C7—C8−179.6 (3)C13—C14—C15—C16174.9 (2)
C5—C6—C7—C20.0 (4)C14—C15—C16—C170.1 (4)
C5—C6—C7—C8178.6 (2)C15—C16—C17—C18−0.3 (4)
C2—C7—C8—C90.7 (4)C16—C17—C18—C190.5 (4)
C6—C7—C8—C9−177.9 (2)C17—C18—C19—C14−0.6 (4)
C7—C8—C9—C10178.9 (2)C15—C14—C19—C180.5 (4)
C7—C8—C9—C1−1.1 (4)C13—C14—C19—C18−174.7 (2)
O2—C1—C9—C8−179.1 (3)N3—C13—C20—C25117.4 (3)
O1—C1—C9—C80.6 (4)C14—C13—C20—C25−65.7 (3)
O2—C1—C9—C100.9 (4)N3—C13—C20—C21−66.3 (3)
O1—C1—C9—C10−179.4 (2)C14—C13—C20—C21110.6 (3)
C12—N1—C10—C11−0.1 (3)C25—C20—C21—C222.0 (3)
C12—N1—C10—C9178.9 (2)C13—C20—C21—C22−174.3 (2)
C8—C9—C10—C11176.1 (3)C20—C21—C22—C23−0.5 (4)
C1—C9—C10—C11−3.9 (4)C21—C22—C23—C24−1.3 (4)
C8—C9—C10—N1−2.8 (3)C22—C23—C24—C251.4 (4)
C1—C9—C10—N1177.2 (2)C23—C24—C25—C200.1 (4)
N1—C10—C11—S1−1.0 (3)C21—C20—C25—C24−1.9 (3)
C9—C10—C11—S1−179.9 (2)C13—C20—C25—C24174.5 (2)
C12—S1—C11—C101.3 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and C2–C7 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.932.463.377 (3)168
C11—H11A···O20.932.302.857 (3)118
C21—H21A···Cg1ii0.932.493.387 (3)162
C24—H24A···Cg2iii0.932.783.536 (3)139

Symmetry codes: (i) −x, y−1/2, −z+5/2; (ii) −x+1, −y, −z+2; (iii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2564).

References

  • Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010a). Acta Cryst. E66, o1491–o1492. [PMC free article] [PubMed]
  • Arshad, A., Osman, H., Chan, K. L., Goh, J. H. & Fun, H.-K. (2010b). Acta Cryst. E66, o1498–o1499. [PMC free article] [PubMed]
  • Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447. [PMC free article] [PubMed]
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Finn, G. J., Creaven, B. S. & Egan, D. A. (2004). Cancer Lett 214, 43–54. [PubMed]
  • Hiremath, S. P., Swamy, K. M. K. & Mrnthyunjayaswamy, B. H. M. (1992). J. Indian Chem. Soc.69, 87–89.
  • Jayashree, B. S., Anuradha, D. & Venugopala, N. K. (2005). Asian J. Chem.17, 2093–2097.
  • Karah, N., Terzioglu, N. & Gursoy, A. (1998). Arzneim. Forsch. Drug Res.48, 758–763. [PubMed]
  • Kimura, Y., Okuda, H., Arichi, S., Baba, K. & Kozawa, M. (1985). Biochim. Biophys. Acta, 834, 224–229. [PubMed]
  • Laffitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Braind, C. & Gilli, R. (2002). Biochemistry, 41, 7217–7223. [PubMed]
  • Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, N., Arshad, M. F. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res.66, 161–167. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tassies, D., Freire, C., Puoan, J., Maragall, S., Moonteagudo, J., Ordinas, A. & Reverter, J. C. (2002). Haematologica, 87, 1185–1191. [PubMed]
  • Weber, U. S., Steffen, B. & Siegers, C. (1998). Res. Commun. Mol. Pathol. Pharmacol.99, 193–206. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography