PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1833–o1834.
Published online 2010 June 26. doi:  10.1107/S1600536810024323
PMCID: PMC3006998

Tris(2-benzamido­eth­yl)ammonium tetra­fluoro­borate

Abstract

In the title compound, C27H31N4O3 +·BF4 , the central N atom is protonated. The three arms form a pocket and one amidic O atom accepts an inter­molecular hydrogen bond with the protonated amine. The tetra­fluoro­borate anion is outside the cavity and is hydrogen bonded to one amide N atom. Adjacent organic cations are connected by a pair of N—H(...)O hydrogen bonds, forming a chain.

Related literature

For general background to tris­(amino­eth­yl)–amine and its binding of anions, see: Bianchi et al. (1997 [triangle]); Kang et al. (2005 [triangle]); Hossain,(2008 [triangle]); For related structures, see: Bazzicalupi et al. (2009 [triangle]); Hossain et al. (2004 [triangle]); Burgess et al. (1991 [triangle]), Lo & Ng (2008 [triangle]); Saeed et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1833-scheme1.jpg

Experimental

Crystal data

  • C27H31N4O3 +·BF4
  • M r = 546.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1833-efi1.jpg
  • a = 13.325 (2) Å
  • b = 9.572 (2) Å
  • c = 21.118 (3) Å
  • β = 94.546 (10)°
  • V = 2685.1 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 90 K
  • 0.27 × 0.25 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer with Oxford Cryostream
  • 31844 measured reflections
  • 5914 independent reflections
  • 3310 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.114
  • S = 1.00
  • 5914 reflections
  • 365 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024323/rk2214sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024323/rk2214Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. This material is based upon work supported by the National Science Foundation under CHE–0821357. HB was supported by the National Institutes of Health (NIH) Science Education Partnership Award (SEPA) Program "Recovery Act Administrative Supplements Providing Summer Research Research Experiences for Students and Science Educators" under contract 5R25RR020405–04S1. Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)–ENH–TR–13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Tris(aminoethyl)–amine, trend with C3 symmetry is known to bind an anion (Burgess et al., 1991; Hossain et al., 2004; Bazzicalupi et al., 2009) and is often used to build azacryptands with amine or amide functionality (Hossain, 2008). These molecules are of particularly interest for binding anions with three fold rotation axes, such as nitrate, phosphate, perchlorate and sulfate (Bianchi et al., 1997). The binding is predominantly occurred through hydrogen bonding and electrostatic interactions of protonated amines or amidic protons with negatively charged species. For example, tetrahedral sulfate was seen to be encapsulated in amine cryptand or amide cryptand where the same trend units are as used as building blocks (Kang et al., 2005). Herein, we report the molecularcv and crystal structures of the title compound in which a tetrafluoroborate anion is held outside the cavity with one hydrogen bond and remains outside the cavity. Single crystal analysis of the title compound reveals that the molecule crystallizes in its monoclinic space group forming a cavity with the three arms that are connected with one central amine (Fig. 1). The central amine is protonated and the chrage is balanced with one tetrafluoroborate that is located outside the cavity and is bonded with one amide nitrogen. In the single–crystal, one amide H points toward the cavity and makes an intermolecular hydrogen bond with the proton on the central amine with N···O distance of 2.864 (2)Å (Table 1). Two adjacent molecules are connected each other forming a centrosymmetric dimer with two hydrogen bonds with N···O bonds distances of 2.861 (2)Å and 2.894 (2)Å (Fig. 2). Similar intramolecular bonding was previously reported for mono–functional (Lo & Ng, 2008) or di–functional (Saeed et al., 2010).

Experimental

To a solution of tris(2–benzamidoethyl) amine (50 mg) in methanol (1 ml) was added a few drops fluoroboric acid at room temperature. The white powder formed was collected by filtration. Yield: 80%. M.P. 423 K. 1H NMR (500 MHz, D2O, TSP): δ 8.78 (b, 3H, NHCO), 7.81(d, 3H, ArH), 7.72 (b, 1H, NHCH2), 7.56 (t, 3H, ArH), 7.47 (t, 3H, ArH), 3.72 (t, 6H, CH2NHCO), 3.35 (t, 6H, NHCH2). 13C NMR (125 MHz, D2O, TSP): δ 167.8 (CO), 138.9 (ArC), 131.9 (ArC), 128.8 (ArC). 127.6 (ArC), 52.4 (NHCH2), 34.8 (CH2CO). The salt was redissolved in water and crystals suitable for X–ray analysis were grown from slow evaporation of the solvent at room temperature.

Refinement

H atoms on C were placed in idealized positions with C—H distances 0.95–0.99Å and thereafter treated as riding. The coordinates of those on N were refined. The Uiso for H was assigned as 1.2 times Ueq of the attached atom. The largest residual density peak was 1.50 Å from O2.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Hydrogen bonds are presented by dashed lines.
Fig. 2.
A view of the hydrogen bonded centrosymmetric dimer.

Crystal data

C27H31N4O3+·BF4F(000) = 1144
Mr = 546.37Dx = 1.352 Mg m3
Monoclinic, P21/nMelting point: 423 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.325 (2) ÅCell parameters from 6170 reflections
b = 9.572 (2) Åθ = 2.5–27.1°
c = 21.118 (3) ŵ = 0.11 mm1
β = 94.546 (10)°T = 90 K
V = 2685.1 (8) Å3Block, colourless
Z = 40.27 × 0.25 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer with Oxford Cryostream3310 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.068
graphiteθmax = 27.1°, θmin = 2.6°
ω–scans with κ–offsetsh = −17→17
31844 measured reflectionsk = −12→12
5914 independent reflectionsl = −27→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114w = 1/[σ2(Fo2) + (0.0492P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5914 reflectionsΔρmax = 0.26 e Å3
365 parametersΔρmin = −0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (7)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.69598 (10)0.66708 (15)0.51248 (6)0.0235 (3)
O20.97004 (10)0.65535 (14)0.51217 (6)0.0237 (3)
O30.66033 (11)0.35955 (15)0.42976 (6)0.0269 (4)
N10.77743 (12)0.52786 (18)0.61191 (7)0.0190 (4)
H1N0.7663 (14)0.584 (2)0.5718 (9)0.023*
N20.55317 (13)0.65036 (19)0.56356 (7)0.0227 (4)
H2N0.4881 (16)0.655 (2)0.5611 (9)0.027*
N30.89693 (13)0.78188 (18)0.58685 (7)0.0207 (4)
H3N0.8721 (15)0.867 (2)0.5972 (9)0.025*
N40.81500 (13)0.39353 (18)0.47972 (7)0.0204 (4)
H4N0.8780 (16)0.412 (2)0.4753 (9)0.024*
C10.67293 (15)0.4962 (2)0.63108 (9)0.0212 (5)
H1A0.67820.46110.67530.025*
H1B0.64320.42080.60350.025*
C20.60230 (16)0.6219 (2)0.62667 (8)0.0238 (5)
H2A0.54950.60730.65640.029*
H2B0.64120.70580.64110.029*
C30.60327 (16)0.6812 (2)0.51281 (9)0.0208 (5)
C40.54443 (15)0.7377 (2)0.45532 (9)0.0203 (5)
C50.46519 (16)0.8306 (2)0.45962 (9)0.0243 (5)
H50.44420.85550.50010.029*
C60.41677 (16)0.8870 (2)0.40503 (10)0.0293 (5)
H60.36320.95160.40810.035*
C70.44618 (16)0.8496 (2)0.34635 (10)0.0310 (6)
H70.41210.88750.30900.037*
C80.52504 (17)0.7572 (2)0.34138 (10)0.0312 (6)
H80.54470.73130.30080.037*
C90.57503 (16)0.7029 (2)0.39571 (9)0.0269 (5)
H90.63050.64170.39240.032*
C100.83608 (15)0.6116 (2)0.66272 (9)0.0218 (5)
H10A0.86000.54830.69780.026*
H10B0.79080.68140.68010.026*
C110.92603 (15)0.6867 (2)0.63859 (9)0.0224 (5)
H11A0.96120.73980.67400.027*
H11B0.97370.61680.62390.027*
C120.92266 (15)0.7599 (2)0.52720 (9)0.0197 (5)
C130.88929 (15)0.8684 (2)0.47918 (9)0.0191 (5)
C140.80176 (16)0.9456 (2)0.48281 (9)0.0237 (5)
H140.76180.93250.51760.028*
C150.77232 (17)1.0423 (2)0.43572 (9)0.0270 (5)
H150.71201.09420.43820.032*
C160.83094 (17)1.0627 (2)0.38534 (9)0.0267 (5)
H160.81121.12960.35350.032*
C170.91824 (17)0.9861 (2)0.38106 (9)0.0272 (5)
H170.95831.00000.34630.033*
C180.94687 (16)0.8890 (2)0.42784 (9)0.0231 (5)
H181.00650.83590.42480.028*
C190.83279 (16)0.3959 (2)0.59740 (8)0.0211 (5)
H19A0.82990.33090.63370.025*
H19B0.90450.41920.59350.025*
C200.79230 (16)0.3222 (2)0.53764 (8)0.0223 (5)
H20A0.82100.22680.53740.027*
H20B0.71840.31310.53810.027*
C210.74826 (15)0.4008 (2)0.42910 (9)0.0199 (5)
C220.78649 (15)0.4566 (2)0.36920 (9)0.0211 (5)
C230.86024 (15)0.5588 (2)0.36906 (9)0.0228 (5)
H230.88700.59890.40800.027*
C240.89490 (16)0.6025 (2)0.31219 (9)0.0280 (5)
H240.94400.67460.31220.034*
C250.85853 (18)0.5420 (2)0.25530 (9)0.0308 (6)
H250.88440.56990.21660.037*
C260.78424 (18)0.4403 (2)0.25513 (10)0.0338 (6)
H260.75890.39860.21630.041*
C270.74720 (17)0.4001 (2)0.31173 (9)0.0274 (5)
H270.69450.33320.31140.033*
B10.8258 (2)1.0373 (3)0.69733 (11)0.0262 (6)
F10.74417 (10)0.95062 (13)0.70473 (5)0.0393 (4)
F20.81014 (10)1.16644 (13)0.72363 (5)0.0396 (4)
F30.83701 (9)1.05339 (12)0.63193 (5)0.0297 (3)
F40.91193 (10)0.97574 (15)0.72626 (5)0.0444 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0192 (9)0.0295 (9)0.0217 (7)0.0012 (7)0.0004 (6)0.0045 (6)
O20.0247 (9)0.0212 (9)0.0252 (8)0.0040 (7)0.0008 (6)−0.0025 (6)
O30.0196 (9)0.0279 (9)0.0329 (8)0.0000 (7)0.0000 (6)0.0030 (7)
N10.0182 (10)0.0217 (10)0.0169 (9)−0.0006 (8)−0.0003 (7)0.0011 (7)
N20.0147 (10)0.0320 (11)0.0213 (9)0.0018 (9)0.0014 (8)0.0021 (8)
N30.0235 (11)0.0182 (10)0.0201 (9)0.0020 (8)0.0010 (7)0.0013 (8)
N40.0170 (10)0.0250 (10)0.0192 (9)−0.0013 (9)0.0013 (8)−0.0006 (8)
C10.0182 (12)0.0258 (13)0.0199 (11)−0.0029 (10)0.0034 (8)0.0007 (9)
C20.0230 (12)0.0304 (13)0.0181 (11)0.0016 (10)0.0027 (9)0.0003 (9)
C30.0210 (13)0.0188 (12)0.0223 (11)−0.0010 (10)0.0007 (9)−0.0017 (9)
C40.0183 (12)0.0212 (12)0.0209 (11)−0.0012 (10)−0.0010 (9)0.0017 (9)
C50.0226 (13)0.0241 (12)0.0263 (12)−0.0013 (10)0.0036 (9)0.0007 (10)
C60.0250 (13)0.0293 (14)0.0333 (13)0.0044 (11)0.0010 (10)0.0069 (11)
C70.0247 (13)0.0398 (15)0.0275 (12)0.0034 (12)−0.0040 (10)0.0123 (11)
C80.0321 (14)0.0391 (15)0.0224 (12)0.0044 (12)0.0024 (10)0.0050 (10)
C90.0231 (13)0.0292 (14)0.0283 (12)0.0022 (10)0.0021 (9)0.0023 (10)
C100.0237 (12)0.0236 (12)0.0173 (10)−0.0001 (10)−0.0028 (9)−0.0019 (9)
C110.0212 (12)0.0236 (12)0.0218 (11)0.0013 (10)−0.0010 (9)0.0010 (9)
C120.0172 (12)0.0195 (12)0.0221 (11)−0.0051 (10)−0.0012 (9)−0.0019 (9)
C130.0185 (12)0.0173 (12)0.0212 (11)−0.0019 (10)−0.0004 (8)−0.0035 (9)
C140.0274 (13)0.0228 (12)0.0206 (11)−0.0009 (11)0.0010 (9)−0.0039 (10)
C150.0284 (13)0.0226 (13)0.0292 (12)0.0035 (11)−0.0024 (10)−0.0026 (10)
C160.0325 (14)0.0207 (12)0.0253 (12)−0.0028 (11)−0.0065 (10)0.0017 (10)
C170.0302 (14)0.0286 (14)0.0225 (12)−0.0068 (11)0.0009 (9)−0.0002 (10)
C180.0206 (12)0.0225 (12)0.0261 (11)−0.0021 (10)0.0016 (9)−0.0034 (10)
C190.0239 (12)0.0181 (12)0.0213 (11)0.0051 (10)0.0019 (9)0.0012 (9)
C200.0248 (13)0.0215 (12)0.0210 (11)0.0003 (10)0.0048 (9)0.0006 (9)
C210.0159 (12)0.0168 (11)0.0268 (12)0.0024 (10)0.0004 (9)−0.0039 (9)
C220.0184 (12)0.0216 (12)0.0225 (11)0.0055 (10)−0.0029 (9)0.0014 (9)
C230.0243 (13)0.0236 (13)0.0203 (11)0.0040 (10)0.0012 (9)−0.0021 (9)
C240.0264 (13)0.0264 (13)0.0312 (13)0.0020 (11)0.0021 (10)0.0031 (10)
C250.0428 (16)0.0291 (14)0.0209 (12)0.0080 (12)0.0050 (10)0.0042 (10)
C260.0472 (16)0.0296 (14)0.0231 (12)0.0057 (13)−0.0079 (11)0.0007 (10)
C270.0294 (14)0.0230 (13)0.0285 (12)−0.0003 (11)−0.0058 (10)0.0036 (10)
B10.0297 (16)0.0295 (16)0.0199 (13)0.0049 (13)0.0043 (11)0.0011 (11)
F10.0437 (9)0.0353 (8)0.0392 (7)−0.0023 (7)0.0056 (6)0.0090 (6)
F20.0628 (10)0.0305 (8)0.0269 (7)0.0042 (7)0.0127 (6)−0.0040 (6)
F30.0397 (8)0.0307 (8)0.0194 (6)0.0108 (6)0.0058 (5)0.0022 (5)
F40.0383 (9)0.0703 (11)0.0249 (7)0.0223 (8)0.0048 (6)0.0119 (7)

Geometric parameters (Å, °)

O1—C31.243 (2)C11—H11A0.9900
O2—C121.238 (2)C11—H11B0.9900
O3—C211.238 (2)C12—C131.495 (3)
N1—C191.506 (2)C13—C141.388 (3)
N1—C101.507 (2)C13—C181.391 (3)
N1—C11.511 (2)C14—C151.392 (3)
N1—H1N1.003 (19)C14—H140.9500
N2—C31.340 (2)C15—C161.383 (3)
N2—C21.463 (2)C15—H150.9500
N2—H2N0.87 (2)C16—C171.384 (3)
N3—C121.348 (2)C16—H160.9500
N3—C111.452 (2)C17—C181.388 (3)
N3—H3N0.92 (2)C17—H170.9500
N4—C211.337 (2)C18—H180.9500
N4—C201.453 (2)C19—C201.508 (3)
N4—H4N0.87 (2)C19—H19A0.9900
C1—C21.526 (3)C19—H19B0.9900
C1—H1A0.9900C20—H20A0.9900
C1—H1B0.9900C20—H20B0.9900
C2—H2A0.9900C21—C221.499 (3)
C2—H2B0.9900C22—C231.387 (3)
C3—C41.493 (3)C22—C271.392 (3)
C4—C51.389 (3)C23—C241.385 (3)
C4—C91.394 (3)C23—H230.9500
C5—C61.385 (3)C24—C251.386 (3)
C5—H50.9500C24—H240.9500
C6—C71.376 (3)C25—C261.388 (3)
C6—H60.9500C25—H250.9500
C7—C81.384 (3)C26—C271.384 (3)
C7—H70.9500C26—H260.9500
C8—C91.382 (3)C27—H270.9500
C8—H80.9500B1—F21.378 (3)
C9—H90.9500B1—F11.387 (3)
C10—C111.520 (3)B1—F41.388 (3)
C10—H10A0.9900B1—F31.409 (2)
C10—H10B0.9900
C19—N1—C10110.86 (15)O2—C12—N3122.60 (18)
C19—N1—C1111.27 (16)O2—C12—C13121.20 (17)
C10—N1—C1110.66 (15)N3—C12—C13116.19 (18)
C19—N1—H1N108.6 (11)C14—C13—C18119.04 (19)
C10—N1—H1N110.5 (11)C14—C13—C12122.60 (17)
C1—N1—H1N104.8 (11)C18—C13—C12118.33 (18)
C3—N2—C2123.66 (18)C13—C14—C15120.34 (19)
C3—N2—H2N120.1 (13)C13—C14—H14119.8
C2—N2—H2N115.9 (13)C15—C14—H14119.8
C12—N3—C11122.19 (18)C16—C15—C14119.9 (2)
C12—N3—H3N119.1 (12)C16—C15—H15120.0
C11—N3—H3N117.5 (12)C14—C15—H15120.0
C21—N4—C20121.86 (18)C15—C16—C17120.3 (2)
C21—N4—H4N119.3 (13)C15—C16—H16119.9
C20—N4—H4N116.9 (13)C17—C16—H16119.9
N1—C1—C2113.71 (17)C16—C17—C18119.6 (2)
N1—C1—H1A108.8C16—C17—H17120.2
C2—C1—H1A108.8C18—C17—H17120.2
N1—C1—H1B108.8C17—C18—C13120.8 (2)
C2—C1—H1B108.8C17—C18—H18119.6
H1A—C1—H1B107.7C13—C18—H18119.6
N2—C2—C1115.56 (16)N1—C19—C20114.47 (16)
N2—C2—H2A108.4N1—C19—H19A108.6
C1—C2—H2A108.4C20—C19—H19A108.6
N2—C2—H2B108.4N1—C19—H19B108.6
C1—C2—H2B108.4C20—C19—H19B108.6
H2A—C2—H2B107.5H19A—C19—H19B107.6
O1—C3—N2122.62 (18)N4—C20—C19113.57 (17)
O1—C3—C4119.51 (17)N4—C20—H20A108.9
N2—C3—C4117.86 (18)C19—C20—H20A108.9
C5—C4—C9119.34 (18)N4—C20—H20B108.9
C5—C4—C3122.10 (17)C19—C20—H20B108.9
C9—C4—C3118.41 (19)H20A—C20—H20B107.7
C6—C5—C4120.12 (19)O3—C21—N4122.99 (18)
C6—C5—H5119.9O3—C21—C22120.58 (17)
C4—C5—H5119.9N4—C21—C22116.38 (18)
C7—C6—C5120.0 (2)C23—C22—C27119.33 (19)
C7—C6—H6120.0C23—C22—C21122.77 (17)
C5—C6—H6120.0C27—C22—C21117.88 (19)
C6—C7—C8120.5 (2)C24—C23—C22119.99 (19)
C6—C7—H7119.8C24—C23—H23120.0
C8—C7—H7119.8C22—C23—H23120.0
C9—C8—C7119.8 (2)C23—C24—C25120.5 (2)
C9—C8—H8120.1C23—C24—H24119.8
C7—C8—H8120.1C25—C24—H24119.8
C8—C9—C4120.3 (2)C24—C25—C26119.7 (2)
C8—C9—H9119.9C24—C25—H25120.1
C4—C9—H9119.9C26—C25—H25120.1
N1—C10—C11113.03 (15)C27—C26—C25119.7 (2)
N1—C10—H10A109.0C27—C26—H26120.1
C11—C10—H10A109.0C25—C26—H26120.1
N1—C10—H10B109.0C26—C27—C22120.6 (2)
C11—C10—H10B109.0C26—C27—H27119.7
H10A—C10—H10B107.8C22—C27—H27119.7
N3—C11—C10112.24 (16)F2—B1—F1110.24 (19)
N3—C11—H11A109.2F2—B1—F4110.49 (19)
C10—C11—H11A109.2F1—B1—F4108.96 (19)
N3—C11—H11B109.2F2—B1—F3109.16 (19)
C10—C11—H11B109.2F1—B1—F3108.70 (18)
H11A—C11—H11B107.9F4—B1—F3109.26 (18)
C19—N1—C1—C2−162.24 (15)N3—C12—C13—C18151.42 (18)
C10—N1—C1—C274.0 (2)C18—C13—C14—C15−0.1 (3)
C3—N2—C2—C1−61.3 (3)C12—C13—C14—C15−177.89 (18)
N1—C1—C2—N283.1 (2)C13—C14—C15—C16−0.7 (3)
C2—N2—C3—O111.6 (3)C14—C15—C16—C170.8 (3)
C2—N2—C3—C4−167.04 (19)C15—C16—C17—C18−0.3 (3)
O1—C3—C4—C5−140.5 (2)C16—C17—C18—C13−0.5 (3)
N2—C3—C4—C538.1 (3)C14—C13—C18—C170.6 (3)
O1—C3—C4—C935.0 (3)C12—C13—C18—C17178.56 (18)
N2—C3—C4—C9−146.4 (2)C10—N1—C19—C20−166.83 (16)
C9—C4—C5—C60.5 (3)C1—N1—C19—C2069.6 (2)
C3—C4—C5—C6175.96 (19)C21—N4—C20—C19−140.97 (19)
C4—C5—C6—C70.9 (3)N1—C19—C20—N472.5 (2)
C5—C6—C7—C8−1.0 (3)C20—N4—C21—O36.9 (3)
C6—C7—C8—C9−0.4 (4)C20—N4—C21—C22−170.42 (17)
C7—C8—C9—C41.9 (3)O3—C21—C22—C23149.1 (2)
C5—C4—C9—C8−1.9 (3)N4—C21—C22—C23−33.5 (3)
C3—C4—C9—C8−177.53 (19)O3—C21—C22—C27−32.3 (3)
C19—N1—C10—C1175.0 (2)N4—C21—C22—C27145.04 (19)
C1—N1—C10—C11−161.06 (17)C27—C22—C23—C24−0.8 (3)
C12—N3—C11—C10−112.8 (2)C21—C22—C23—C24177.74 (19)
N1—C10—C11—N358.7 (2)C22—C23—C24—C25−1.9 (3)
C11—N3—C12—O22.2 (3)C23—C24—C25—C262.3 (3)
C11—N3—C12—C13−178.72 (17)C24—C25—C26—C27−0.1 (3)
O2—C12—C13—C14148.4 (2)C25—C26—C27—C22−2.5 (3)
N3—C12—C13—C14−30.7 (3)C23—C22—C27—C263.0 (3)
O2—C12—C13—C18−29.5 (3)C21—C22—C27—C26−175.61 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O11.003 (19)1.70 (2)2.646 (2)155.2 (16)
N2—H2N···O3i0.87 (2)2.01 (2)2.861 (2)168.8 (19)
N3—H3N···F30.92 (2)2.00 (2)2.901 (2)170.0 (18)
N4—H4N···O2ii0.87 (2)2.12 (2)2.894 (2)147.5 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2214).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem.48, 2391–2398. [PubMed]
  • Bianchi, A., García–España, E. & Bowman–James, K. (1997). Supramolecular Chemistry of Anions. New York: Wiley–VCH.
  • Burgess, J., Al-Alousy, A., Fawcett, J. & Russell, D. R. (1991). Acta Cryst. C47, 2506–2508.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hossain, M. A. (2008). Curr. Org. Chem.12, 1231–1256.
  • Hossain, M. A., Liljegren, J. A., Powell, R. D. & Bowman–James, K. (2004). Inorg. Chem.43, 3751–3755. [PubMed]
  • Kang, S. O., Hossain, M. A., Powell, D. & Bowman–James, K. (2005). Chem. Commun. pp. 328–330. [PubMed]
  • Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, o922. [PMC free article] [PubMed]
  • Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Saeed, M. A., Fronczek, F. R. & Hossain, M. A. (2010). Acta Cryst. E66, o656–o657. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography