PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1780.
Published online 2010 June 26. doi:  10.1107/S160053681002386X
PMCID: PMC3006996

(2E)-1-(6-Chloro-2-methyl-4-phenyl­quinolin-3-yl)-3-phenyl­prop-2-en-1-one

Abstract

In the title compound, C25H18ClNO, the conformation about the C=C double bond is E. Significant twists are evident in the mol­ecule, with the benzene ring forming a dihedral angle of 53.92 (11)° with the quinolinyl residue. Further, the chalcone residue is approximately perpendicular to the quinolinyl residue [Cq—Cq—Cc—Oc torsion angle = −104.5 (3)°, where q = quinolinyl and c = chalcone]. In the crystal, the presence of C—H(...)O and C—H(...)π inter­actions leads to supra­molecular layers lying parallel to (An external file that holds a picture, illustration, etc.
Object name is e-66-o1780-efi1.jpg02).

Related literature

For the biological activity of quinoline derivatives, see: Campbell et al. (1998 [triangle]). For the biological activity of chalcone derivatives, see: Chen et al. (2001 [triangle]); Zi & Simoneau (2005 [triangle]). For a related structure, see: Prasath et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1780-scheme1.jpg

Experimental

Crystal data

  • C25H18ClNO
  • M r = 383.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1780-efi2.jpg
  • a = 9.9250 (9) Å
  • b = 11.1001 (9) Å
  • c = 17.4651 (15) Å
  • β = 97.250 (1)°
  • V = 1908.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 100 K
  • 0.46 × 0.30 × 0.26 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.536, T max = 1.000
  • 16152 measured reflections
  • 3948 independent reflections
  • 3030 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.188
  • S = 1.09
  • 3948 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681002386X/hb5510sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002386X/hb5510Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Both quinolines (Campbell et al., 1998) and open chain flavonoids, i.e. chalcones (Chen et al., 2001; Zi & Simoneau, 2005), are known to possess a wide range of biological activities. Herein, in continuation of previous studies (Prasath et al., 2010), we describe the crystal structure of a molecule containing both quinoline and chalcone residues, namely, the title compound, (I).

In (I), Fig. 1, the quinolinyl residue is planar [r.m.s. = 0.041 Å] with both the benzene ring and chalcone residue being twisted out of the plane. The dihedral angle formed between the quinolinyl and benzene (C20–C25) rings is 53.92 (11) °. In the case of the chalcone residue, the twist is best illustrated by the O1–C9–C10–C11 torsion angle of -104.5 (3) °. There are also twists within the chalcone residues as exemplified by the C7–C8–C9–O1 and C7–C8–C9–C10 torsion angles of -163.7 (3) and 14.7 (4) °, respectively. The conformation about the C7═C8 bond [1.340 (4) Å] is E.

Supramolecular layers parallel to (1 0 2) are evident in the crystal structure. These, Fig. 2 and Table 1, are stabilized by C–H···O contacts and C–H···π interactions where the π-system is the NC5 ring of the quinolinyl residue.

Experimental

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (0.01 M), benzaldehyde (0.0 1M) and a catalytic amount of KOH in distilled ethanol (50 ml) was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured on to ice and neutralized with dilute acetic acid. The solid that formed was filtered, dried, purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate to produce colourless blocks of (I); Yield: 65% and m.pt: 400 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the supramolecular array in (I) highlighting the C–H···O and C–H···π interactions as orange and purple dashed lines, respectively.

Crystal data

C25H18ClNOF(000) = 800
Mr = 383.85Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4382 reflections
a = 9.9250 (9) Åθ = 2.2–28.1°
b = 11.1001 (9) ŵ = 0.22 mm1
c = 17.4651 (15) ÅT = 100 K
β = 97.250 (1)°Block, colourless
V = 1908.7 (3) Å30.46 × 0.30 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3948 independent reflections
Radiation source: fine-focus sealed tube3030 reflections with I > 2σ(I)
graphiteRint = 0.079
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.536, Tmax = 1.000k = −13→13
16152 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0925P)2 + 1.6015P] where P = (Fo2 + 2Fc2)/3
3948 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.10119 (8)−0.00729 (6)0.39598 (4)0.0310 (2)
O10.13396 (19)0.68284 (16)0.58922 (12)0.0270 (5)
N10.3459 (2)0.4751 (2)0.42881 (14)0.0225 (5)
C10.4920 (3)0.5159 (2)0.77131 (17)0.0218 (6)
C20.4665 (3)0.5785 (2)0.83726 (17)0.0254 (6)
H20.39270.63350.83430.031*
C30.5471 (3)0.5616 (2)0.90671 (18)0.0275 (6)
H30.52780.60400.95130.033*
C40.6565 (3)0.4825 (2)0.91160 (18)0.0284 (7)
H40.71180.47060.95950.034*
C50.6847 (3)0.4212 (2)0.84662 (18)0.0291 (7)
H50.75990.36770.84970.035*
C60.6033 (3)0.4376 (2)0.77700 (17)0.0254 (6)
H60.62330.39520.73250.030*
C70.4062 (3)0.5249 (2)0.69742 (17)0.0219 (6)
H70.43260.47810.65620.026*
C80.2941 (3)0.5922 (2)0.68141 (17)0.0232 (6)
H80.26330.63650.72240.028*
C90.2165 (3)0.6014 (2)0.60506 (17)0.0218 (6)
C100.2406 (3)0.5114 (2)0.54359 (16)0.0196 (6)
C110.1878 (2)0.3965 (2)0.54427 (16)0.0196 (6)
C120.2102 (2)0.3183 (2)0.48211 (16)0.0192 (6)
C130.1502 (3)0.2022 (2)0.47167 (16)0.0211 (6)
H130.09110.17350.50630.025*
C140.1783 (3)0.1328 (2)0.41150 (17)0.0237 (6)
C150.2654 (3)0.1713 (2)0.35909 (17)0.0255 (6)
H150.28480.11990.31840.031*
C160.3223 (3)0.2835 (2)0.36714 (17)0.0242 (6)
H160.38170.31000.33200.029*
C170.2931 (3)0.3600 (2)0.42726 (16)0.0206 (6)
C180.3167 (3)0.5479 (2)0.48365 (17)0.0215 (6)
C190.3681 (3)0.6752 (2)0.48052 (18)0.0269 (6)
H19A0.43660.67940.44480.040*
H19B0.40880.70010.53210.040*
H19C0.29230.72900.46260.040*
C200.1112 (3)0.3561 (2)0.60680 (16)0.0210 (6)
C21−0.0006 (3)0.4208 (2)0.62611 (17)0.0238 (6)
H21−0.03100.49000.59690.029*
C22−0.0675 (3)0.3855 (3)0.68711 (18)0.0288 (7)
H22−0.14270.43080.69990.035*
C23−0.0251 (3)0.2841 (3)0.72961 (18)0.0306 (7)
H23−0.06970.26070.77230.037*
C240.0828 (3)0.2169 (2)0.70960 (18)0.0293 (7)
H240.10990.14580.73770.035*
C250.1511 (3)0.2522 (2)0.64943 (17)0.0250 (6)
H250.22560.20590.63670.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0373 (4)0.0150 (3)0.0400 (5)−0.0062 (3)0.0013 (3)−0.0048 (3)
O10.0212 (10)0.0136 (9)0.0452 (13)0.0019 (7)0.0001 (9)−0.0028 (8)
N10.0180 (11)0.0158 (11)0.0339 (14)0.0000 (9)0.0036 (9)0.0010 (9)
C10.0213 (13)0.0120 (12)0.0325 (16)−0.0028 (10)0.0048 (11)0.0020 (10)
C20.0247 (14)0.0163 (13)0.0354 (17)0.0002 (10)0.0042 (12)−0.0017 (11)
C30.0313 (16)0.0166 (13)0.0342 (17)−0.0025 (11)0.0026 (12)−0.0023 (11)
C40.0320 (16)0.0165 (13)0.0348 (17)−0.0024 (11)−0.0034 (13)0.0032 (11)
C50.0248 (15)0.0170 (13)0.0442 (19)0.0037 (11)−0.0011 (13)0.0019 (12)
C60.0255 (14)0.0172 (13)0.0340 (17)0.0015 (11)0.0060 (12)−0.0009 (11)
C70.0221 (14)0.0118 (11)0.0326 (16)−0.0023 (10)0.0070 (11)−0.0002 (11)
C80.0245 (14)0.0155 (12)0.0302 (16)0.0010 (10)0.0056 (11)−0.0036 (11)
C90.0162 (13)0.0122 (12)0.0371 (16)−0.0043 (10)0.0038 (11)−0.0005 (11)
C100.0153 (12)0.0151 (12)0.0279 (15)0.0016 (10)0.0004 (10)0.0016 (10)
C110.0126 (12)0.0154 (12)0.0298 (15)0.0007 (9)−0.0014 (10)0.0019 (10)
C120.0115 (12)0.0158 (12)0.0298 (15)0.0020 (9)0.0005 (10)0.0012 (10)
C130.0156 (12)0.0153 (12)0.0320 (16)0.0011 (10)0.0018 (11)0.0017 (11)
C140.0237 (14)0.0134 (12)0.0326 (16)0.0009 (10)−0.0023 (11)0.0009 (11)
C150.0283 (15)0.0171 (13)0.0310 (16)0.0054 (11)0.0035 (12)−0.0025 (11)
C160.0196 (13)0.0209 (13)0.0324 (16)0.0011 (11)0.0039 (11)0.0009 (11)
C170.0139 (12)0.0148 (12)0.0329 (16)0.0013 (9)0.0017 (10)0.0014 (11)
C180.0163 (13)0.0143 (12)0.0332 (16)−0.0002 (10)0.0002 (11)0.0014 (11)
C190.0246 (14)0.0149 (13)0.0416 (18)−0.0036 (11)0.0059 (12)0.0009 (12)
C200.0191 (13)0.0138 (12)0.0294 (15)−0.0042 (9)0.0003 (11)−0.0011 (10)
C210.0182 (13)0.0177 (13)0.0348 (17)−0.0018 (10)0.0013 (11)−0.0017 (11)
C220.0206 (14)0.0254 (14)0.0409 (18)−0.0062 (11)0.0066 (12)−0.0082 (13)
C230.0322 (16)0.0280 (15)0.0329 (17)−0.0155 (13)0.0085 (13)−0.0038 (12)
C240.0374 (17)0.0172 (13)0.0319 (17)−0.0087 (12)−0.0007 (13)0.0029 (12)
C250.0273 (14)0.0134 (12)0.0334 (17)−0.0018 (10)0.0000 (12)−0.0012 (11)

Geometric parameters (Å, °)

Cl1—C141.739 (3)C12—C171.417 (4)
O1—C91.228 (3)C12—C131.422 (3)
N1—C181.314 (4)C13—C141.360 (4)
N1—C171.379 (3)C13—H130.9500
C1—C21.396 (4)C14—C151.403 (4)
C1—C61.399 (4)C15—C161.368 (4)
C1—C71.457 (4)C15—H150.9500
C2—C31.379 (4)C16—C171.409 (4)
C2—H20.9500C16—H160.9500
C3—C41.391 (4)C18—C191.506 (3)
C3—H30.9500C19—H19A0.9800
C4—C51.382 (4)C19—H19B0.9800
C4—H40.9500C19—H19C0.9800
C5—C61.384 (4)C20—C211.399 (4)
C5—H50.9500C20—C251.402 (4)
C6—H60.9500C21—C221.381 (4)
C7—C81.340 (4)C21—H210.9500
C7—H70.9500C22—C231.384 (4)
C8—C91.457 (4)C22—H220.9500
C8—H80.9500C23—C241.385 (4)
C9—C101.508 (4)C23—H230.9500
C10—C111.380 (3)C24—C251.377 (4)
C10—C181.425 (4)C24—H240.9500
C11—C121.429 (4)C25—H250.9500
C11—C201.477 (4)
C18—N1—C17117.8 (2)C13—C14—C15122.3 (2)
C2—C1—C6118.3 (3)C13—C14—Cl1119.8 (2)
C2—C1—C7123.4 (2)C15—C14—Cl1117.8 (2)
C6—C1—C7118.3 (3)C16—C15—C14119.4 (3)
C3—C2—C1120.9 (3)C16—C15—H15120.3
C3—C2—H2119.6C14—C15—H15120.3
C1—C2—H2119.6C15—C16—C17120.3 (3)
C2—C3—C4120.1 (3)C15—C16—H16119.8
C2—C3—H3119.9C17—C16—H16119.8
C4—C3—H3119.9N1—C17—C16117.3 (2)
C5—C4—C3119.9 (3)N1—C17—C12122.7 (2)
C5—C4—H4120.1C16—C17—C12119.9 (2)
C3—C4—H4120.1N1—C18—C10123.1 (2)
C4—C5—C6120.0 (3)N1—C18—C19116.4 (3)
C4—C5—H5120.0C10—C18—C19120.5 (2)
C6—C5—H5120.0C18—C19—H19A109.5
C5—C6—C1120.8 (3)C18—C19—H19B109.5
C5—C6—H6119.6H19A—C19—H19B109.5
C1—C6—H6119.6C18—C19—H19C109.5
C8—C7—C1126.9 (3)H19A—C19—H19C109.5
C8—C7—H7116.6H19B—C19—H19C109.5
C1—C7—H7116.6C21—C20—C25118.3 (3)
C7—C8—C9124.0 (3)C21—C20—C11121.4 (2)
C7—C8—H8118.0C25—C20—C11120.4 (2)
C9—C8—H8118.0C22—C21—C20120.9 (3)
O1—C9—C8121.3 (2)C22—C21—H21119.6
O1—C9—C10119.3 (3)C20—C21—H21119.6
C8—C9—C10119.4 (2)C21—C22—C23120.1 (3)
C11—C10—C18120.5 (2)C21—C22—H22120.0
C11—C10—C9120.8 (2)C23—C22—H22120.0
C18—C10—C9118.7 (2)C22—C23—C24119.7 (3)
C10—C11—C12117.3 (2)C22—C23—H23120.2
C10—C11—C20121.2 (2)C24—C23—H23120.2
C12—C11—C20121.5 (2)C25—C24—C23120.7 (3)
C17—C12—C13118.6 (2)C25—C24—H24119.7
C17—C12—C11118.3 (2)C23—C24—H24119.7
C13—C12—C11123.0 (2)C24—C25—C20120.4 (3)
C14—C13—C12119.3 (3)C24—C25—H25119.8
C14—C13—H13120.4C20—C25—H25119.8
C12—C13—H13120.4
C6—C1—C2—C3−1.5 (4)C13—C14—C15—C16−1.5 (4)
C7—C1—C2—C3176.5 (3)Cl1—C14—C15—C16176.6 (2)
C1—C2—C3—C40.8 (4)C14—C15—C16—C17−0.3 (4)
C2—C3—C4—C50.2 (4)C18—N1—C17—C16178.5 (2)
C3—C4—C5—C6−0.6 (4)C18—N1—C17—C12−0.3 (4)
C4—C5—C6—C1−0.1 (4)C15—C16—C17—N1−175.5 (2)
C2—C1—C6—C51.1 (4)C15—C16—C17—C123.3 (4)
C7—C1—C6—C5−177.0 (3)C13—C12—C17—N1174.2 (2)
C2—C1—C7—C80.2 (4)C11—C12—C17—N1−4.0 (4)
C6—C1—C7—C8178.2 (3)C13—C12—C17—C16−4.5 (4)
C1—C7—C8—C9176.9 (2)C11—C12—C17—C16177.2 (2)
C7—C8—C9—O1−163.7 (3)C17—N1—C18—C104.0 (4)
C7—C8—C9—C1014.7 (4)C17—N1—C18—C19−176.0 (2)
O1—C9—C10—C11−104.5 (3)C11—C10—C18—N1−3.2 (4)
C8—C9—C10—C1177.1 (3)C9—C10—C18—N1178.2 (2)
O1—C9—C10—C1874.1 (3)C11—C10—C18—C19176.8 (2)
C8—C9—C10—C18−104.3 (3)C9—C10—C18—C19−1.9 (4)
C18—C10—C11—C12−1.3 (4)C10—C11—C20—C2154.1 (4)
C9—C10—C11—C12177.3 (2)C12—C11—C20—C21−126.0 (3)
C18—C10—C11—C20178.7 (2)C10—C11—C20—C25−124.8 (3)
C9—C10—C11—C20−2.7 (4)C12—C11—C20—C2555.2 (3)
C10—C11—C12—C174.6 (3)C25—C20—C21—C222.0 (4)
C20—C11—C12—C17−175.4 (2)C11—C20—C21—C22−176.9 (2)
C10—C11—C12—C13−173.6 (2)C20—C21—C22—C23−0.7 (4)
C20—C11—C12—C136.5 (4)C21—C22—C23—C24−1.4 (4)
C17—C12—C13—C142.7 (4)C22—C23—C24—C252.1 (4)
C11—C12—C13—C14−179.1 (2)C23—C24—C25—C20−0.8 (4)
C12—C13—C14—C150.3 (4)C21—C20—C25—C24−1.2 (4)
C12—C13—C14—Cl1−177.80 (19)C11—C20—C25—C24177.6 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C10–C12,C17,C18 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.483.315 (3)146
C21—H21···Cg1ii0.952.713.459 (3)137

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5510).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem.31, 1031–1035. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem.44, 2374–2377. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst 43 Submitted.
  • Zi, X. & Simoneau, A. R. (2005). Cancer Res.65, 3479–3486. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography