PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m793.
Published online 2010 June 16. doi:  10.1107/S1600536810021872
PMCID: PMC3006995

(2-{[1,1-Bis(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-4-chloro­phenolato-κ3 O,N,O′)dibutyl­tin(IV)

Abstract

In the title compound, [Sn(C4H9)2(C11H12BrNO4)], the Schiff base ligand chelates to the SnIV atom through the two deprotonated hy­droxy groups, as well as through the N atom, to confer an overall cis-C2SnNO2 trigonal-bipyramidal geometry at the SnIV atom [C—Sn—C = 129.92 (9)°]. The remaining methyl­enehy­droxy groups engage in O—H(...)O hydrogen bonding with the O atoms of adjacent mol­ecules, leading to infinite supra­molecular chains propagating in [001].

Related literature

For related structures, see Reisi et al. (2010 [triangle]); Ng (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m793-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(C11H12BrNO4)]
  • M r = 535.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m793-efi1.jpg
  • a = 18.8326 (9) Å
  • b = 13.3811 (7) Å
  • c = 16.5768 (8) Å
  • β = 91.385 (3)°
  • V = 4176.1 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.16 mm−1
  • T = 100 K
  • 0.40 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.365, T max = 0.786
  • 19535 measured reflections
  • 4785 independent reflections
  • 4229 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.052
  • S = 1.02
  • 4785 reflections
  • 239 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: pubCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021872/xu2772sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021872/xu2772Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Malaya (grant Nos. PS342/2009 C and RG020/09AFR) for supporting this study.

supplementary crystallographic information

Comment

The Schiff base derived from the condensation of 5-bromosalicylaldehyde and tris(hydroxymethyl)methylamine is deprotonated with respect to the phenoxy hydrogen atom and one of the methylenehydroxyl hydrogen atom. The ligand coordinates to the dibutyltin fragment through this doubly deprotonated oxygen atoms and the imine nitrogen (Fig. 1).

The tin atom is in a cis-trigonal bipyramidal geometry with a C—Sn—C angle of 129.92 (9)°. The two deprotonated oxygen atoms occupied the axial sites with a O—Sn—O angle of 155.60 (6)°, indicating a distortion in the trigonal bipyramidal geometry at the Sn atom. Adjacent molecules are linked by hydrogen bonds to form an infinite polymeric chain (Fig. 2).

Experimental

The Schiff base, 4-bromo-2-tris[(hydroxymethyl)methylimino]phenol was prepared from tris(hydroxymethyl)aminomethane and 5-bromosalicylaldehyde in absolute ethanol. The compound (0.30 g, 0.1 mmol) and dibutyltin oxide (0.25 g, 1.0 mmol) were heated in 50 ml of toluene in a Dean-Stark apparatus for 8 h. The solution was left for crystallizaton for a week during which yellow crystals were obtained.

Refinement

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C). The hydroxy-H was refined with a restraint of 0.84 ± 0.01 Å, Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (2-{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-4-chlorophenolato-κ3N,O,O')dibutyltin(IV) showing 70% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary ...
Fig. 2.
Crystal packing of the unit cell showing the hydrogen bonding interactions in the molecule.

Crystal data

[Sn(C4H9)2(C11H12BrNO4)]F(000) = 2144
Mr = 535.04Dx = 1.702 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7855 reflections
a = 18.8326 (9) Åθ = 2.2–30.4°
b = 13.3811 (7) ŵ = 3.16 mm1
c = 16.5768 (8) ÅT = 100 K
β = 91.385 (3)°Needle, yellow
V = 4176.1 (4) Å30.40 × 0.10 × 0.08 mm
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer4785 independent reflections
Radiation source: fine-focus sealed tube4229 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −24→24
Tmin = 0.365, Tmax = 0.786k = −17→17
19535 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0231P)2 + 4.784P] where P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.65 e Å3
2 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.325854 (7)0.128538 (10)0.254101 (8)0.01133 (5)
Br10.047899 (12)0.180095 (17)−0.072373 (14)0.02090 (6)
N10.33348 (9)0.06301 (13)0.13219 (10)0.0117 (3)
O10.27217 (8)0.24249 (11)0.18796 (9)0.0154 (3)
O20.39697 (8)0.00855 (11)0.27086 (8)0.0141 (3)
O30.51910 (7)−0.01628 (11)0.10327 (9)0.0139 (3)
H30.5442−0.01110.14560.021*
O40.37130 (8)−0.06319 (12)−0.01932 (8)0.0151 (3)
H40.4107−0.0416−0.03440.023*
C10.22983 (11)0.14839 (15)0.07343 (12)0.0119 (4)
C20.22471 (11)0.22806 (16)0.12949 (12)0.0132 (4)
C30.16695 (12)0.29422 (16)0.12036 (12)0.0153 (4)
H3A0.16380.35020.15540.018*
C40.11478 (11)0.27967 (17)0.06175 (13)0.0155 (4)
H4A0.07510.32340.05810.019*
C50.12066 (11)0.19991 (16)0.00753 (12)0.0148 (4)
C60.17791 (11)0.13705 (16)0.01159 (13)0.0144 (4)
H60.18260.0856−0.02740.017*
C70.28804 (11)0.07801 (16)0.07408 (12)0.0125 (4)
H70.29330.03880.02680.015*
C80.39114 (11)−0.01213 (15)0.12512 (12)0.0116 (4)
C90.39651 (11)−0.06281 (16)0.20865 (12)0.0130 (4)
H9A0.3557−0.10850.21500.016*
H9B0.4406−0.10300.21240.016*
C100.45890 (10)0.04737 (15)0.10849 (12)0.0117 (4)
H10A0.45250.08470.05730.014*
H10B0.46720.09660.15230.014*
C110.37745 (11)−0.09448 (16)0.06228 (12)0.0131 (4)
H11A0.4167−0.14360.06680.016*
H11B0.3331−0.12960.07620.016*
C120.23527 (12)0.06420 (17)0.30964 (14)0.0191 (5)
H12A0.22080.00440.27810.023*
H12B0.25000.04100.36420.023*
C130.17028 (12)0.13118 (19)0.31788 (16)0.0259 (5)
H13A0.18160.18460.35740.031*
H13B0.15970.16350.26520.031*
C140.10488 (13)0.07612 (19)0.34454 (17)0.0272 (5)
H14A0.11680.03970.39510.033*
H14B0.09180.02580.30300.033*
C150.04070 (14)0.1421 (2)0.35880 (18)0.0350 (7)
H15A0.04950.18330.40690.052*
H15B−0.00120.10010.36690.052*
H15C0.03230.18540.31190.052*
C160.40219 (11)0.23185 (17)0.30125 (13)0.0164 (4)
H16A0.41610.21020.35650.020*
H16B0.44510.22760.26800.020*
C170.37945 (12)0.34137 (17)0.30495 (14)0.0180 (5)
H17A0.42050.38180.32430.022*
H17B0.36670.36410.24960.022*
C180.31701 (12)0.36167 (17)0.35918 (14)0.0200 (5)
H18A0.30500.43360.35600.024*
H18B0.27530.32370.33850.024*
C190.33061 (15)0.3340 (2)0.44694 (15)0.0344 (7)
H19A0.33680.26150.45150.052*
H19B0.29010.35490.47890.052*
H19C0.37370.36770.46710.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.00935 (7)0.01444 (8)0.01012 (7)0.00111 (5)−0.00151 (5)−0.00132 (5)
Br10.01670 (11)0.02112 (12)0.02432 (12)0.00431 (9)−0.01116 (9)−0.00292 (9)
N10.0092 (8)0.0119 (8)0.0140 (8)0.0008 (7)0.0000 (6)0.0013 (7)
O10.0171 (8)0.0148 (7)0.0139 (7)0.0022 (6)−0.0048 (6)−0.0024 (6)
O20.0146 (7)0.0160 (7)0.0116 (7)0.0034 (6)−0.0035 (6)−0.0013 (6)
O30.0092 (7)0.0196 (8)0.0127 (7)0.0046 (6)−0.0028 (6)−0.0026 (6)
O40.0133 (7)0.0214 (8)0.0107 (7)−0.0014 (6)0.0005 (6)−0.0005 (6)
C10.0097 (9)0.0143 (10)0.0117 (10)0.0006 (8)−0.0013 (8)0.0013 (8)
C20.0128 (10)0.0164 (10)0.0105 (9)−0.0011 (8)0.0001 (8)0.0010 (8)
C30.0185 (11)0.0149 (10)0.0126 (10)0.0024 (9)0.0015 (8)−0.0015 (8)
C40.0131 (10)0.0190 (11)0.0144 (10)0.0034 (9)0.0003 (8)0.0031 (8)
C50.0117 (10)0.0188 (11)0.0138 (10)−0.0011 (9)−0.0042 (8)0.0028 (8)
C60.0140 (10)0.0154 (10)0.0136 (10)0.0012 (8)−0.0023 (8)−0.0004 (8)
C70.0119 (10)0.0128 (10)0.0129 (10)−0.0002 (8)0.0018 (8)0.0001 (8)
C80.0096 (9)0.0127 (10)0.0124 (10)0.0032 (8)−0.0003 (7)0.0003 (8)
C90.0120 (10)0.0141 (10)0.0128 (10)0.0027 (8)−0.0009 (8)0.0001 (8)
C100.0095 (9)0.0140 (10)0.0114 (10)0.0009 (8)−0.0010 (7)−0.0002 (8)
C110.0110 (9)0.0144 (10)0.0138 (10)−0.0006 (8)−0.0008 (8)−0.0009 (8)
C120.0155 (11)0.0192 (11)0.0227 (12)−0.0013 (9)0.0043 (9)−0.0017 (9)
C130.0166 (12)0.0316 (14)0.0298 (13)0.0049 (10)0.0043 (10)0.0099 (11)
C140.0196 (12)0.0264 (13)0.0359 (14)−0.0035 (11)0.0077 (10)−0.0110 (11)
C150.0179 (13)0.0498 (18)0.0376 (16)0.0035 (12)0.0062 (11)0.0078 (13)
C160.0115 (10)0.0193 (11)0.0183 (11)0.0024 (9)−0.0016 (8)−0.0034 (9)
C170.0177 (11)0.0174 (11)0.0188 (11)−0.0003 (9)−0.0035 (9)−0.0014 (9)
C180.0201 (11)0.0197 (11)0.0199 (11)0.0051 (9)−0.0042 (9)−0.0049 (9)
C190.0313 (14)0.0536 (18)0.0184 (12)0.0169 (14)0.0004 (11)0.0000 (12)

Geometric parameters (Å, °)

Sn1—N12.2108 (17)C9—H9B0.9900
Sn1—O12.1203 (15)C10—H10A0.9900
Sn1—O22.1049 (14)C10—H10B0.9900
Sn1—C122.139 (2)C11—H11A0.9900
Sn1—C162.129 (2)C11—H11B0.9900
Br1—C51.901 (2)C12—C131.526 (3)
N1—C71.289 (3)C12—H12A0.9900
N1—C81.487 (3)C12—H12B0.9900
O1—C21.317 (2)C13—C141.510 (3)
O2—C91.405 (2)C13—H13A0.9900
O3—C101.422 (2)C13—H13B0.9900
O3—H30.8400C14—C151.520 (3)
O4—C111.418 (2)C14—H14A0.9900
O4—H40.8400C14—H14B0.9900
C1—C61.408 (3)C15—H15A0.9800
C1—C21.419 (3)C15—H15B0.9800
C1—C71.445 (3)C15—H15C0.9800
C2—C31.408 (3)C16—C171.528 (3)
C3—C41.379 (3)C16—H16A0.9900
C3—H3A0.9500C16—H16B0.9900
C4—C51.401 (3)C17—C181.522 (3)
C4—H4A0.9500C17—H17A0.9900
C5—C61.368 (3)C17—H17B0.9900
C6—H60.9500C18—C191.517 (3)
C7—H70.9500C18—H18A0.9900
C8—C111.534 (3)C18—H18B0.9900
C8—C101.535 (3)C19—H19A0.9800
C8—C91.543 (3)C19—H19B0.9800
C9—H9A0.9900C19—H19C0.9800
O2—Sn1—O1155.60 (6)H10A—C10—H10B108.0
O2—Sn1—C1691.43 (7)O4—C11—C8116.38 (17)
O1—Sn1—C1691.84 (7)O4—C11—H11A108.2
O2—Sn1—C1298.49 (7)C8—C11—H11A108.2
O1—Sn1—C1297.86 (8)O4—C11—H11B108.2
C16—Sn1—C12129.92 (9)C8—C11—H11B108.2
O2—Sn1—N176.29 (6)H11A—C11—H11B107.3
O1—Sn1—N181.56 (6)C13—C12—Sn1116.87 (16)
C16—Sn1—N1122.33 (7)C13—C12—H12A108.1
C12—Sn1—N1107.69 (8)Sn1—C12—H12A108.1
C7—N1—C8121.31 (18)C13—C12—H12B108.1
C7—N1—Sn1124.39 (14)Sn1—C12—H12B108.1
C8—N1—Sn1113.83 (12)H12A—C12—H12B107.3
C2—O1—Sn1125.58 (13)C14—C13—C12113.7 (2)
C9—O2—Sn1115.39 (12)C14—C13—H13A108.8
C10—O3—H3109.5C12—C13—H13A108.8
C11—O4—H4109.5C14—C13—H13B108.8
C6—C1—C2120.06 (19)C12—C13—H13B108.8
C6—C1—C7116.66 (19)H13A—C13—H13B107.7
C2—C1—C7123.25 (19)C13—C14—C15114.8 (2)
O1—C2—C3119.74 (19)C13—C14—H14A108.6
O1—C2—C1122.45 (19)C15—C14—H14A108.6
C3—C2—C1117.81 (19)C13—C14—H14B108.6
C4—C3—C2121.5 (2)C15—C14—H14B108.6
C4—C3—H3A119.2H14A—C14—H14B107.5
C2—C3—H3A119.2C14—C15—H15A109.5
C3—C4—C5119.6 (2)C14—C15—H15B109.5
C3—C4—H4A120.2H15A—C15—H15B109.5
C5—C4—H4A120.2C14—C15—H15C109.5
C6—C5—C4120.8 (2)H15A—C15—H15C109.5
C6—C5—Br1120.16 (16)H15B—C15—H15C109.5
C4—C5—Br1119.09 (16)C17—C16—Sn1116.73 (14)
C5—C6—C1120.2 (2)C17—C16—H16A108.1
C5—C6—H6119.9Sn1—C16—H16A108.1
C1—C6—H6119.9C17—C16—H16B108.1
N1—C7—C1126.66 (19)Sn1—C16—H16B108.1
N1—C7—H7116.7H16A—C16—H16B107.3
C1—C7—H7116.7C18—C17—C16114.59 (19)
N1—C8—C11115.35 (16)C18—C17—H17A108.6
N1—C8—C10105.98 (16)C16—C17—H17A108.6
C11—C8—C10112.19 (16)C18—C17—H17B108.6
N1—C8—C9104.99 (15)C16—C17—H17B108.6
C11—C8—C9107.46 (17)H17A—C17—H17B107.6
C10—C8—C9110.64 (16)C19—C18—C17114.1 (2)
O2—C9—C8111.04 (17)C19—C18—H18A108.7
O2—C9—H9A109.4C17—C18—H18A108.7
C8—C9—H9A109.4C19—C18—H18B108.7
O2—C9—H9B109.4C17—C18—H18B108.7
C8—C9—H9B109.4H18A—C18—H18B107.6
H9A—C9—H9B108.0C18—C19—H19A109.5
O3—C10—C8111.57 (16)C18—C19—H19B109.5
O3—C10—H10A109.3H19A—C19—H19B109.5
C8—C10—H10A109.3C18—C19—H19C109.5
O3—C10—H10B109.3H19A—C19—H19C109.5
C8—C10—H10B109.3H19B—C19—H19C109.5
O2—Sn1—N1—C7161.51 (18)Sn1—N1—C7—C18.4 (3)
O1—Sn1—N1—C7−28.79 (17)C6—C1—C7—N1−166.4 (2)
C16—Sn1—N1—C7−115.61 (17)C2—C1—C7—N115.8 (3)
C12—Sn1—N1—C766.82 (18)C7—N1—C8—C11−22.0 (3)
O2—Sn1—N1—C8−10.66 (12)Sn1—N1—C8—C11150.45 (14)
O1—Sn1—N1—C8159.04 (14)C7—N1—C8—C10102.8 (2)
C16—Sn1—N1—C872.22 (15)Sn1—N1—C8—C10−84.77 (15)
C12—Sn1—N1—C8−105.35 (14)C7—N1—C8—C9−140.06 (19)
O2—Sn1—O1—C267.9 (2)Sn1—N1—C8—C932.38 (18)
C16—Sn1—O1—C2165.50 (16)Sn1—O2—C9—C841.10 (19)
C12—Sn1—O1—C2−63.76 (17)N1—C8—C9—O2−46.7 (2)
N1—Sn1—O1—C243.07 (16)C11—C8—C9—O2−169.96 (16)
O1—Sn1—O2—C9−42.4 (2)C10—C8—C9—O267.3 (2)
C16—Sn1—O2—C9−140.00 (14)N1—C8—C10—O3177.90 (15)
C12—Sn1—O2—C989.25 (14)C11—C8—C10—O3−55.4 (2)
N1—Sn1—O2—C9−17.01 (13)C9—C8—C10—O364.6 (2)
Sn1—O1—C2—C3144.75 (16)N1—C8—C11—O463.8 (2)
Sn1—O1—C2—C1−36.3 (3)C10—C8—C11—O4−57.7 (2)
C6—C1—C2—O1−179.37 (19)C9—C8—C11—O4−179.53 (16)
C7—C1—C2—O1−1.7 (3)O2—Sn1—C12—C13174.84 (17)
C6—C1—C2—C3−0.4 (3)O1—Sn1—C12—C13−23.33 (19)
C7—C1—C2—C3177.28 (19)C16—Sn1—C12—C1375.8 (2)
O1—C2—C3—C4−177.65 (19)N1—Sn1—C12—C13−106.93 (18)
C1—C2—C3—C43.4 (3)Sn1—C12—C13—C14170.31 (17)
C2—C3—C4—C5−2.9 (3)C12—C13—C14—C15176.0 (2)
C3—C4—C5—C6−0.7 (3)O2—Sn1—C16—C17−179.92 (16)
C3—C4—C5—Br1179.46 (16)O1—Sn1—C16—C1724.26 (16)
C4—C5—C6—C13.6 (3)C12—Sn1—C16—C17−77.59 (19)
Br1—C5—C6—C1−176.54 (16)N1—Sn1—C16—C17105.44 (16)
C2—C1—C6—C5−3.0 (3)Sn1—C16—C17—C1862.2 (2)
C7—C1—C6—C5179.12 (19)C16—C17—C18—C1960.7 (3)
C8—N1—C7—C1179.97 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.772.608 (2)174
O4—H4···O3ii0.841.932.733 (2)160

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2772).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ng, S. W. (2008). Acta Cryst. E64, o2455. [PMC free article] [PubMed]
  • Reisi, R., Misran, M., Lo, K. M. & Ng, S. W. (2010). Acta Cryst. E66, m482. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography