PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1791.
Published online 2010 June 26. doi:  10.1107/S1600536810024104
PMCID: PMC3006994

2-(4-Fluoro­phen­yl)-1-(4-meth­oxy­phen­yl)-4,5-dimethyl-1H-imidazole

Abstract

In the title compound, C18H17FN2O, the imidazole ring makes dihedral angles of 76.46 (7) and 40.68 (7)° with the meth­oxy­phenyl and fluoro­phenyl rings, respectively. The dihedral angle between the two benzene rings is 71.25 (6)°.

Related literature

For the optical properties of heterocyclic imidazole derivatives, see: Santos et al. (2001 [triangle]); Huang et al. (2004 [triangle]). For their role in the preparation of functionalized materials, see: Kamidate et al. (1989 [triangle]). For their fluorescence and chemiluminescence properties, see: Ucucu et al. (2001 [triangle]). For their use in the construction of fluorescent chemisensors, see: Jayabharathi et al. (2009 [triangle], 2010 [triangle]); Zhou & Fahrni (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1791-scheme1.jpg

Experimental

Crystal data

  • C18H17FN2O
  • M r = 296.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1791-efi1.jpg
  • a = 8.5132 (1) Å
  • b = 9.5128 (2) Å
  • c = 19.2610 (3) Å
  • β = 96.798 (2)°
  • V = 1548.87 (4) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 0.72 mm−1
  • T = 295 K
  • 0.40 × 0.32 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010 [triangle]) T min = 0.835, T max = 1.000
  • 6517 measured reflections
  • 3235 independent reflections
  • 2744 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.130
  • S = 1.08
  • 3235 reflections
  • 200 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024104/wn2396sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024104/wn2396Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

JJ thanks the Department of Science and Technology [No. SR/S1/IC-07/2007], University Grants commission [F. No. 36–21/2008 (SR)] for allocating funding to this research work. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

Recently heterocyclic imidazole derivatives have attracted considerable attention because of their unique optical properties (Santos et al., (2001) and Huang et al., (2004)). These compounds play a very important role in chemistry as mediators for synthetic reactions, primarily for preparing functionalized materials (Kamidate et al., (1989)). The imidazole nucleus forms the main structure of some well known components of human organisms, e.g., the amino acid histidine, Vitamin B12, a component of DNA base structure, purines, histamine and biotin and is present in many natural or synthetic drug molecules, e.g., azomycin, cimetidine and metronidazole. These also have significant analytical applications utilizing their fluorescence and chemiluminescence properties (Ucucu et al., (2001)). An important property that makes imidazole derivatives more attractive as a chelator is the appreciable change in its fluorescence upon metal binding. Therefore, imidazole derivatives have been used to construct highly sensitive fluorescent chemisensors for sensing and imaging of metal ions. Its chelates in particular those with Ir3+ are major components for organic light-emitting diodes (Jayabharathi et al., (2009)) and are promising candidates for fluorescent chemisensors (Zhou & Fahrni (2004)) for metal ions. In this paper we report the crystal and molecular structure of the title compound, a fluorescent chemisensor (Jayabharathi et al., (2010)), synthesized in our laboratory.

In the title molecule (Fig. 1), C18H17FN2O, the imidazole ring is essentially planar [maximum deviation of 0.005 (1) Å for C2]. The imidazole ring makes dihedral angles of 76.46 (7)° and 40.68 (7)° with the methoxyphenyl (C11–C16) and fluorophenyl (C21–C26) rings, respectively. The dihedral angle between the two benzene rings is 71.25 (6)°. In the crystal structure no classical hydrogen bonds are observed.

Experimental

To pure biacetyl (1.48 g, 15 mmol) in ethanol (10 ml), p-anisidine (1.84 g, 15 mmol) ammonium acetate (7.0 g, 15 mmol) and 4-fluorobenzaldehyde (1.8 g, 15 mmol) were added over a period of about 1 h, maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid which separated was purified by column chromatography using hexane: ethyl acetate as the eluent. Yield: 1.77 g (40%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for Csp2 and 0.96 Å for Csp3; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Crystal data

C18H17FN2OF(000) = 624
Mr = 296.34Dx = 1.271 Mg m3
Monoclinic, P21/cMelting point: 385 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 8.5132 (1) ÅCell parameters from 4271 reflections
b = 9.5128 (2) Åθ = 4.6–77.3°
c = 19.2610 (3) ŵ = 0.72 mm1
β = 96.798 (2)°T = 295 K
V = 1548.87 (4) Å3Prism, colourless
Z = 40.40 × 0.32 × 0.22 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer3235 independent reflections
Radiation source: Enhance (Cu) X-ray Source2744 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 77.5°, θmin = 4.6°
ω scansh = −9→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)k = −12→9
Tmin = 0.835, Tmax = 1.000l = −23→24
6517 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.130w = 1/[σ2(Fo2) + (0.076P)2 + 0.1231P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3235 reflectionsΔρmax = 0.16 e Å3
200 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0214 (14)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F40.28268 (12)−0.00876 (12)0.68530 (5)0.0874 (4)
O170.19515 (13)−0.00279 (11)0.26852 (6)0.0708 (4)
N10.26219 (12)0.46448 (11)0.44385 (5)0.0517 (3)
N30.22859 (14)0.59440 (12)0.53660 (6)0.0604 (4)
C20.24814 (14)0.46597 (14)0.51401 (6)0.0530 (4)
C40.22762 (16)0.68002 (15)0.47855 (7)0.0623 (4)
C50.24779 (16)0.60275 (14)0.42099 (7)0.0581 (4)
C110.25104 (14)0.34332 (12)0.39879 (6)0.0480 (3)
C120.38038 (14)0.29589 (14)0.36872 (6)0.0531 (4)
C130.36702 (15)0.18029 (14)0.32457 (6)0.0540 (4)
C140.22295 (15)0.11173 (13)0.31098 (6)0.0529 (4)
C150.09313 (16)0.16030 (15)0.34140 (7)0.0609 (4)
C160.10672 (14)0.27585 (14)0.38472 (7)0.0561 (4)
C170.3214 (2)−0.05517 (17)0.23377 (8)0.0719 (5)
C210.25773 (14)0.33905 (14)0.55796 (6)0.0531 (4)
C220.36774 (16)0.23360 (16)0.55099 (7)0.0617 (4)
C230.37767 (17)0.11663 (17)0.59375 (7)0.0664 (5)
C240.27481 (16)0.10690 (16)0.64337 (7)0.0629 (4)
C250.16576 (18)0.20821 (18)0.65268 (7)0.0684 (5)
C260.15801 (13)0.32536 (12)0.60982 (6)0.0620 (4)
C410.20446 (13)0.83510 (12)0.48384 (6)0.0871 (7)
C510.2531 (2)0.64214 (17)0.34669 (8)0.0771 (6)
H120.477070.341700.378110.0636*
H130.454300.148890.304170.0647*
H15−0.003610.114410.332430.0731*
H160.019130.308510.404500.0674*
H17A0.40446−0.088900.267720.1079*
H17B0.28354−0.130780.203260.1079*
H17C0.361330.018810.206850.1079*
H220.435940.241960.516890.0740*
H230.451820.046510.589090.0797*
H250.098290.198750.687000.0820*
H260.085160.395900.615760.0744*
H41A0.098760.854000.493960.1306*
H41B0.278830.872280.520620.1306*
H41C0.220900.878720.440340.1306*
H51A0.225500.739500.340230.1157*
H51B0.357920.627010.334490.1157*
H51C0.179380.585370.317330.1157*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F40.0794 (6)0.0928 (7)0.0893 (6)−0.0048 (5)0.0075 (5)0.0315 (5)
O170.0808 (7)0.0606 (6)0.0735 (6)−0.0040 (5)0.0191 (5)−0.0211 (5)
N10.0556 (5)0.0500 (5)0.0508 (5)−0.0028 (4)0.0114 (4)−0.0055 (4)
N30.0624 (6)0.0605 (7)0.0591 (6)−0.0047 (5)0.0109 (5)−0.0151 (5)
C20.0516 (6)0.0578 (7)0.0502 (6)−0.0020 (5)0.0080 (5)−0.0098 (5)
C40.0626 (8)0.0534 (7)0.0723 (8)−0.0063 (5)0.0143 (6)−0.0103 (6)
C50.0611 (7)0.0511 (7)0.0641 (7)−0.0044 (5)0.0152 (5)−0.0028 (5)
C110.0525 (6)0.0479 (6)0.0448 (5)0.0004 (5)0.0103 (4)−0.0021 (4)
C120.0486 (6)0.0571 (7)0.0546 (6)−0.0029 (5)0.0109 (5)−0.0009 (5)
C130.0558 (7)0.0566 (7)0.0518 (6)0.0074 (5)0.0161 (5)0.0000 (5)
C140.0644 (7)0.0479 (6)0.0475 (6)0.0019 (5)0.0114 (5)−0.0021 (5)
C150.0546 (7)0.0617 (8)0.0681 (8)−0.0097 (5)0.0144 (6)−0.0120 (6)
C160.0505 (6)0.0593 (7)0.0614 (7)−0.0011 (5)0.0183 (5)−0.0083 (6)
C170.0900 (10)0.0660 (8)0.0607 (8)0.0139 (7)0.0130 (7)−0.0143 (7)
C210.0521 (6)0.0609 (7)0.0457 (6)−0.0053 (5)0.0029 (4)−0.0085 (5)
C220.0580 (7)0.0754 (9)0.0526 (7)0.0050 (6)0.0104 (5)0.0022 (6)
C230.0619 (7)0.0734 (9)0.0630 (8)0.0089 (7)0.0035 (6)0.0035 (7)
C240.0598 (7)0.0707 (8)0.0560 (7)−0.0085 (6)−0.0019 (5)0.0060 (6)
C250.0640 (8)0.0852 (10)0.0574 (7)−0.0100 (7)0.0136 (6)0.0001 (7)
C260.0602 (7)0.0692 (8)0.0579 (7)−0.0010 (6)0.0125 (5)−0.0090 (6)
C410.1054 (13)0.0557 (9)0.1035 (13)−0.0034 (8)0.0256 (10)−0.0168 (8)
C510.1017 (12)0.0617 (9)0.0721 (9)0.0013 (8)0.0276 (8)0.0082 (7)

Geometric parameters (Å, °)

F4—C241.3618 (18)C23—C241.374 (2)
O17—C141.3660 (16)C24—C251.365 (2)
O17—C171.422 (2)C25—C261.384 (2)
N1—C21.3707 (15)C12—H120.9300
N1—C51.3879 (17)C13—H130.9300
N1—C111.4392 (15)C15—H150.9300
N3—C21.3141 (17)C16—H160.9300
N3—C41.3825 (18)C17—H17A0.9600
C2—C211.4713 (18)C17—H17B0.9600
C4—C51.3579 (19)C17—H17C0.9600
C4—C411.4934 (18)C22—H220.9300
C5—C511.485 (2)C23—H230.9300
C11—C121.3793 (17)C25—H250.9300
C11—C161.3842 (17)C26—H260.9300
C12—C131.3865 (18)C41—H41A0.9600
C13—C141.3864 (18)C41—H41B0.9600
C14—C151.3898 (19)C41—H41C0.9600
C15—C161.3766 (19)C51—H51A0.9600
C21—C221.3897 (19)C51—H51B0.9600
C21—C261.3915 (16)C51—H51C0.9600
C22—C231.381 (2)
F4···H13i2.5900C26···H17Cvii2.8100
F4···H15ii2.5600C41···H51A2.9400
F4···H17Ai2.8600C51···H41C2.9200
O17···H51Aiii2.8100C51···H26v3.0700
N1···H222.8600H12···C17ix3.0700
N3···H262.8000H12···N3iv2.8900
N3···H12iv2.8900H13···C172.5500
N3···H16v2.6700H13···H17A2.3900
C4···C26v3.5149 (18)H13···H17C2.3100
C5···C26v3.5027 (18)H13···F4i2.5900
C11···C223.1592 (18)H15···F4ii2.5600
C12···C513.478 (2)H16···C23.0900
C12···C223.5745 (18)H16···N3v2.6700
C14···C25vi3.4808 (19)H17A···C132.8200
C16···C213.4832 (18)H17A···H132.3900
C17···C26vi3.410 (2)H17A···F4i2.8600
C21···C163.4832 (18)H17A···C23i3.0800
C22···C113.1592 (18)H17A···C24i3.0500
C22···C123.5745 (18)H17C···C132.7300
C25···C14vii3.4808 (19)H17C···H132.3100
C26···C17vii3.410 (2)H17C···C26vi2.8100
C26···C4v3.5149 (18)H22···N12.8600
C26···C5v3.5027 (18)H22···C112.7800
C51···C123.478 (2)H22···C122.8800
C2···H163.0900H22···C4iv2.9500
C4···H22iv2.9500H23···H41Biii2.4900
C5···H26v2.8400H23···C13i3.0300
C11···H222.7800H25···C14vii3.0800
C11···H51C2.8100H26···N32.8000
C12···H222.8800H26···C5v2.8400
C13···H17A2.8200H26···C51v3.0700
C13···H23i3.0300H41B···C23x2.8000
C13···H17C2.7300H41B···H23x2.4900
C14···H25vi3.0800H41C···C512.9200
C17···H12viii3.0700H41C···H51A2.3400
C17···H132.5500H51A···O17x2.8100
C17···H51Aiii3.0100H51A···C17x3.0100
C23···H17Ai3.0800H51A···C412.9400
C23···H41Biii2.8000H51A···H41C2.3400
C24···H17Ai3.0500H51C···C112.8100
C14—O17—C17118.31 (12)C11—C12—H12120.00
C2—N1—C5106.75 (10)C13—C12—H12120.00
C2—N1—C11126.56 (10)C12—C13—H13120.00
C5—N1—C11124.79 (10)C14—C13—H13120.00
C2—N3—C4105.59 (11)C14—C15—H15120.00
N1—C2—N3111.43 (11)C16—C15—H15120.00
N1—C2—C21123.60 (11)C11—C16—H16120.00
N3—C2—C21124.96 (11)C15—C16—H16120.00
N3—C4—C5110.62 (12)O17—C17—H17A109.00
N3—C4—C41121.00 (11)O17—C17—H17B109.00
C5—C4—C41128.38 (12)O17—C17—H17C109.00
N1—C5—C4105.60 (11)H17A—C17—H17B109.00
N1—C5—C51122.22 (12)H17A—C17—H17C109.00
C4—C5—C51132.17 (13)H17B—C17—H17C109.00
N1—C11—C12121.08 (11)C21—C22—H22119.00
N1—C11—C16118.89 (11)C23—C22—H22119.00
C12—C11—C16120.02 (11)C22—C23—H23121.00
C11—C12—C13120.36 (11)C24—C23—H23121.00
C12—C13—C14119.70 (11)C24—C25—H25121.00
O17—C14—C13125.09 (12)C26—C25—H25121.00
O17—C14—C15115.31 (12)C21—C26—H26120.00
C13—C14—C15119.60 (12)C25—C26—H26120.00
C14—C15—C16120.47 (12)C4—C41—H41A109.00
C11—C16—C15119.86 (12)C4—C41—H41B109.00
C2—C21—C22121.93 (11)C4—C41—H41C109.00
C2—C21—C26119.53 (11)H41A—C41—H41B109.00
C22—C21—C26118.50 (12)H41A—C41—H41C109.00
C21—C22—C23121.22 (13)H41B—C41—H41C109.00
C22—C23—C24118.05 (14)C5—C51—H51A109.00
F4—C24—C23118.45 (13)C5—C51—H51B109.00
F4—C24—C25118.63 (12)C5—C51—H51C109.00
C23—C24—C25122.92 (14)H51A—C51—H51B109.00
C24—C25—C26118.39 (13)H51A—C51—H51C109.00
C21—C26—C25120.90 (12)H51B—C51—H51C109.00
C17—O17—C14—C13−1.62 (19)N3—C4—C5—C51178.88 (15)
C17—O17—C14—C15177.89 (12)C41—C4—C5—N1−179.32 (12)
C5—N1—C2—N3−0.96 (14)C41—C4—C5—C51−0.3 (3)
C5—N1—C2—C21−179.65 (11)N1—C11—C12—C13−179.00 (11)
C11—N1—C2—N3−165.76 (11)C16—C11—C12—C13−0.29 (18)
C11—N1—C2—C2115.55 (19)N1—C11—C16—C15179.58 (11)
C2—N1—C5—C40.64 (14)C12—C11—C16—C150.84 (19)
C2—N1—C5—C51−178.50 (13)C11—C12—C13—C14−0.36 (18)
C11—N1—C5—C4165.78 (11)C12—C13—C14—O17179.95 (13)
C11—N1—C5—C51−13.4 (2)C12—C13—C14—C150.46 (18)
C2—N1—C11—C12−113.75 (14)O17—C14—C15—C16−179.44 (12)
C2—N1—C11—C1667.52 (16)C13—C14—C15—C160.10 (19)
C5—N1—C11—C1284.05 (16)C14—C15—C16—C11−0.8 (2)
C5—N1—C11—C16−94.68 (15)C2—C21—C22—C23178.47 (12)
C4—N3—C2—N10.86 (14)C26—C21—C22—C230.7 (2)
C4—N3—C2—C21179.52 (12)C2—C21—C26—C25−179.05 (12)
C2—N3—C4—C5−0.43 (16)C22—C21—C26—C25−1.26 (18)
C2—N3—C4—C41178.82 (12)C21—C22—C23—C240.3 (2)
N1—C2—C21—C2240.96 (18)C22—C23—C24—F4179.35 (13)
N1—C2—C21—C26−141.33 (12)C22—C23—C24—C25−1.0 (2)
N3—C2—C21—C22−137.56 (14)F4—C24—C25—C26−179.85 (12)
N3—C2—C21—C2640.16 (18)C23—C24—C25—C260.5 (2)
N3—C4—C5—N1−0.14 (15)C24—C25—C26—C210.7 (2)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x, −y+1/2, z−1/2; (vii) x, −y+1/2, z+1/2; (viii) −x+1, y−1/2, −z+1/2; (ix) −x+1, y+1/2, −z+1/2; (x) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2396).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Huang, W. S., Lin, J. T., Chien, C. H., Tao, Y. T., Sun, S. S. & Wen, Y. S. (2004). Chem. Mater.16, 2480–2488.
  • Jayabharathi, J., Thanikachalam, V. & Saravanan, K. (2009). J. Photochem. Photobiol. A, 208, 13–20.
  • Jayabharathi, J., Thanikachalam, V., Saravanan, K. & Srinivasan, N. (2010). J. Fluorescence. Accepted.
  • Kamidate, T., Yamaguchi, K., Segawa, T. & Watanabe, H. (1989). Anal. Sci.5, 429–433.
  • Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Santos, J., Mintz, E. A., Zehnder, O., Bosshard, C., Bu, X. R. & Günter, P. (2001). Tetrahedron Lett.42, 805–808.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Ucucu, U., Karaburun, N. G. & Isikdag, I. (2001). Farmaco, 56, 285–290. [PubMed]
  • Zhou, Z. & Fahrni, C. J. (2004). J. Am. Chem. Soc.126, 8862–8863. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography