PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1752.
Published online 2010 June 23. doi:  10.1107/S1600536810023329
PMCID: PMC3006992

1-[(Phenyl­iminio)amino]-2-naphtho­late

Abstract

In the zwitterionic title compound, C16H12N2O, the dihedral angle between the benzene ring and naphthalene ring system is 2.0 (1)°. The azo group adopts a trans configuration and an intra­molecular N—H(...)O hydrogen bond is found. In the crystal, the mol­ecules are packed by strong π–π inter­actions [centroid–centroid distance between aromatic rings = 3.375 (3) Å].

Related literature

For general background to the use of azo compounds as dyes, pigments and advanced materials, see: Lee et al. (2004 [triangle]); Oueslati et al. (2004 [triangle]). Many azo compounds have been synthesized by diazo­tization and diazo coupling reactions, see: Wang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1752-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O
  • M r = 248.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1752-efi1.jpg
  • a = 27.8713 (4) Å
  • b = 6.0248 (1) Å
  • c = 14.9199 (2) Å
  • β = 103.570 (2)°
  • V = 2435.40 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 200 K
  • 0.13 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.989, T max = 0.993
  • 8859 measured reflections
  • 3002 independent reflections
  • 2536 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.169
  • S = 1.08
  • 3002 reflections
  • 175 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810023329/rk2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810023329/rk2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support of the Natural Science Foundation of Hubei Province (2009CDB349, 2006ABB038), the Distinguished Young Scholars Programs, HBDE (Q200722003, Z201022001, CXY2009B028) and the Science and Technology Foundation for Creative Research Group of HBNU (2009).

supplementary crystallographic information

Comment

Azo-compounds are very important in the fields of dyes, pigments and advanced materials (Lee et al., 2004; Oueslati et al., 2004). Azo-dyes are synthetic pigments that contain an azo-group, as part of the structure. Azo-groups do not occur naturally. Many azo-compounds have been synthesized by the diazotization and diazo coupling reaction (Wang et al., 2003). The title compound, I, was obtained through the diazotization of aniline followed by a coupling reaction with 2-naphthol.

The molecular structure of I is illustrated in Fig. 1. The molecule adopts an anti–configuration with the two aryl groups reside on the opposite side of azo–group. The dihedral angle between the benzene ring and naphthalene ring is 2.0 (1)°. An intramolecular N—H···O hydrogen bond is found (Table 1). It is more interesting, that hydrogen atom in the OH-group has transfer to N atom in the azo-group to form the structure of dipolar ion. Moreover, different Fourier map indicate hydrogen site location is closer to nitrogen atom of azo-group. In the crystal molecules are packed by the weak π–π interactions with the closest approach between centroids of aromatic rings is 3.375 (3)Å.

Experimental

The title compound was prepared by a similar method of other aromatic azo–compounds (Wang et al., 2003). Single crystals of I were obtained by slow evaporation from a petroleum ether ethyl acetate (2/1 v/v) solution system.

Refinement

The H atoms based on C atoms were positioned geometrically at the distance of 0.95Å, and refined in a riding model with Uiso(H) = 1.2Ueq(C). The H atom of amino-group was refined freely.

Figures

Fig. 1.
The structure of title compound showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C16H12N2OF(000) = 1040
Mr = 248.28Dx = 1.354 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2783 reflections
a = 27.8713 (4) Åθ = 2.8–28.2°
b = 6.0248 (1) ŵ = 0.09 mm1
c = 14.9199 (2) ÅT = 200 K
β = 103.570 (2)°Block, red
V = 2435.40 (7) Å30.13 × 0.10 × 0.08 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer3002 independent reflections
Radiation source: fine–focus sealed tube2536 reflections with I > 2σ(I)
graphiteRint = 0.088
[var phi] and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −35→36
Tmin = 0.989, Tmax = 0.993k = −8→8
8859 measured reflectionsl = −15→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0799P)2 + 1.0846P] where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.14696 (5)0.0629 (2)0.09018 (10)0.0244 (3)
C20.19947 (5)0.0124 (3)0.11604 (10)0.0287 (3)
C30.21439 (6)−0.1846 (3)0.17062 (11)0.0330 (4)
H30.2485−0.21970.19010.040*
C40.18102 (6)−0.3195 (3)0.19449 (11)0.0319 (4)
H40.1924−0.44840.22980.038*
C50.12895 (5)−0.2771 (2)0.16900 (10)0.0256 (3)
C60.09522 (6)−0.4260 (3)0.19251 (11)0.0314 (4)
H60.1070−0.55750.22560.038*
C70.04557 (6)−0.3840 (3)0.16840 (11)0.0337 (4)
H70.0230−0.48700.18390.040*
C80.02823 (6)−0.1896 (3)0.12098 (11)0.0324 (4)
H8−0.0062−0.15940.10520.039*
C90.06067 (5)−0.0409 (2)0.09676 (10)0.0282 (3)
H90.04840.09120.06480.034*
C100.11155 (5)−0.0826 (2)0.11877 (9)0.0237 (3)
C110.13828 (6)0.5505 (2)−0.04777 (9)0.0255 (3)
C120.17170 (6)0.6926 (3)−0.07488 (11)0.0311 (4)
H120.20610.6623−0.05760.037*
C130.15433 (7)0.8788 (3)−0.12732 (11)0.0355 (4)
H130.17690.9765−0.14600.043*
C140.10432 (6)0.9226 (3)−0.15249 (11)0.0340 (4)
H140.09251.0507−0.18790.041*
C150.07150 (6)0.7790 (3)−0.12588 (11)0.0329 (4)
H150.03710.8088−0.14380.039*
C160.08806 (6)0.5922 (2)−0.07338 (11)0.0292 (3)
H160.06530.4944−0.05530.035*
N10.12797 (5)0.23592 (19)0.03768 (8)0.0253 (3)
N20.15775 (5)0.3675 (2)0.00730 (9)0.0268 (3)
H2A0.1899 (7)0.333 (3)0.0227 (13)0.032*
O10.23107 (4)0.1341 (2)0.09144 (9)0.0387 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0285 (7)0.0253 (7)0.0190 (7)0.0024 (5)0.0050 (5)−0.0008 (5)
C20.0281 (7)0.0323 (8)0.0243 (7)0.0009 (6)0.0030 (6)−0.0012 (6)
C30.0263 (7)0.0406 (9)0.0288 (8)0.0067 (6)−0.0003 (6)0.0043 (7)
C40.0357 (8)0.0321 (8)0.0255 (8)0.0084 (6)0.0020 (6)0.0068 (6)
C50.0327 (8)0.0274 (7)0.0166 (7)0.0027 (6)0.0058 (6)−0.0008 (5)
C60.0416 (9)0.0292 (7)0.0250 (8)0.0036 (6)0.0110 (6)0.0037 (6)
C70.0381 (9)0.0335 (8)0.0329 (9)−0.0032 (6)0.0151 (7)0.0020 (6)
C80.0292 (8)0.0388 (9)0.0306 (8)0.0029 (6)0.0097 (6)0.0001 (6)
C90.0300 (7)0.0307 (7)0.0241 (7)0.0059 (6)0.0069 (6)0.0034 (6)
C100.0292 (7)0.0258 (7)0.0163 (6)0.0032 (5)0.0059 (5)−0.0013 (5)
C110.0351 (8)0.0239 (7)0.0184 (7)0.0026 (6)0.0080 (6)−0.0009 (5)
C120.0343 (8)0.0324 (8)0.0284 (8)0.0010 (6)0.0113 (6)0.0007 (6)
C130.0489 (10)0.0314 (8)0.0304 (8)−0.0022 (7)0.0180 (7)0.0031 (6)
C140.0521 (10)0.0271 (7)0.0232 (8)0.0076 (7)0.0100 (7)0.0030 (6)
C150.0387 (8)0.0315 (8)0.0274 (8)0.0071 (6)0.0057 (7)−0.0008 (6)
C160.0340 (8)0.0273 (7)0.0276 (8)0.0001 (6)0.0101 (6)0.0001 (6)
N10.0317 (7)0.0257 (6)0.0192 (6)0.0011 (5)0.0073 (5)−0.0017 (4)
N20.0284 (6)0.0271 (6)0.0253 (7)0.0019 (5)0.0071 (5)0.0023 (5)
O10.0284 (6)0.0426 (7)0.0437 (7)−0.0017 (5)0.0058 (5)0.0084 (5)

Geometric parameters (Å, °)

C1—N11.3364 (18)C9—C101.401 (2)
C1—C21.455 (2)C9—H90.9500
C1—C101.457 (2)C11—C161.385 (2)
C2—O11.2650 (18)C11—C121.393 (2)
C2—C31.444 (2)C11—N21.4058 (18)
C3—C41.344 (2)C12—C131.389 (2)
C3—H30.9500C12—H120.9500
C4—C51.434 (2)C13—C141.381 (2)
C4—H40.9500C13—H130.9500
C5—C61.402 (2)C14—C151.383 (2)
C5—C101.4141 (19)C14—H140.9500
C6—C71.369 (2)C15—C161.387 (2)
C6—H60.9500C15—H150.9500
C7—C81.395 (2)C16—H160.9500
C7—H70.9500N1—N21.3033 (17)
C8—C91.380 (2)N2—H2A0.895 (19)
C8—H80.9500
N1—C1—C2123.63 (13)C10—C9—H9119.6
N1—C1—C10116.02 (13)C9—C10—C5118.37 (13)
C2—C1—C10120.32 (13)C9—C10—C1122.79 (13)
O1—C2—C3120.81 (14)C5—C10—C1118.82 (13)
O1—C2—C1121.82 (13)C16—C11—C12120.65 (13)
C3—C2—C1117.37 (13)C16—C11—N2122.01 (13)
C4—C3—C2121.37 (14)C12—C11—N2117.33 (14)
C4—C3—H3119.3C13—C12—C11119.46 (15)
C2—C3—H3119.3C13—C12—H12120.3
C3—C4—C5122.82 (14)C11—C12—H12120.3
C3—C4—H4118.6C14—C13—C12120.23 (15)
C5—C4—H4118.6C14—C13—H13119.9
C6—C5—C10119.73 (14)C12—C13—H13119.9
C6—C5—C4121.06 (13)C13—C14—C15119.73 (14)
C10—C5—C4119.21 (13)C13—C14—H14120.1
C7—C6—C5120.78 (14)C15—C14—H14120.1
C7—C6—H6119.6C14—C15—C16120.98 (15)
C5—C6—H6119.6C14—C15—H15119.5
C6—C7—C8119.79 (14)C16—C15—H15119.5
C6—C7—H7120.1C11—C16—C15118.95 (14)
C8—C7—H7120.1C11—C16—H16120.5
C9—C8—C7120.52 (14)C15—C16—H16120.5
C9—C8—H8119.7N2—N1—C1118.77 (12)
C7—C8—H8119.7N1—N2—C11119.36 (13)
C8—C9—C10120.77 (14)N1—N2—H2A116.7 (11)
C8—C9—H9119.6C11—N2—H2A123.9 (11)
N1—C1—C2—O11.5 (2)C4—C5—C10—C13.3 (2)
C10—C1—C2—O1179.23 (13)N1—C1—C10—C9−2.8 (2)
N1—C1—C2—C3−177.99 (13)C2—C1—C10—C9179.28 (13)
C10—C1—C2—C3−0.2 (2)N1—C1—C10—C5175.65 (12)
O1—C2—C3—C4−177.66 (15)C2—C1—C10—C5−2.3 (2)
C1—C2—C3—C41.8 (2)C16—C11—C12—C130.6 (2)
C2—C3—C4—C5−0.8 (2)N2—C11—C12—C13−178.35 (13)
C3—C4—C5—C6177.74 (15)C11—C12—C13—C14−0.1 (2)
C3—C4—C5—C10−1.8 (2)C12—C13—C14—C15−0.5 (2)
C10—C5—C6—C7−0.8 (2)C13—C14—C15—C160.6 (2)
C4—C5—C6—C7179.65 (15)C12—C11—C16—C15−0.6 (2)
C5—C6—C7—C8−0.9 (2)N2—C11—C16—C15178.39 (13)
C6—C7—C8—C91.1 (2)C14—C15—C16—C11−0.1 (2)
C7—C8—C9—C100.4 (2)C2—C1—N1—N20.2 (2)
C8—C9—C10—C5−2.0 (2)C10—C1—N1—N2−177.61 (12)
C8—C9—C10—C1176.43 (13)C1—N1—N2—C11−179.81 (12)
C6—C5—C10—C92.2 (2)C16—C11—N2—N1−2.1 (2)
C4—C5—C10—C9−178.23 (13)C12—C11—N2—N1176.92 (12)
C6—C5—C10—C1−176.27 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.895 (19)1.803 (18)2.5545 (17)140.0 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2210).

References

  • Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem.69, 2902–2905. [PubMed]
  • Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem.28, 1575–1578.
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm.57, 77–86.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography