PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1601.
Published online 2010 June 9. doi:  10.1107/S1600536810020118
PMCID: PMC3006989

(E)-1-[(2-Hy­droxy-1-naphth­yl)methyl­idene­amino]­imidazolidine-2,4-dione

Abstract

The title compound, C14H11N3O3, adopts an E or trans configuration with respect to the C=N bond. In the mol­ecule there is an intra­molecular O—H(...)N hydrogen bond involving the hy­droxy substituent at the 2-positon of the naphthalene ring and the adjacent methyl­ene­amino N atom. The mol­ecule is roughly planar, the dihedral angle between the naphthalene and imidazolidine-2,4-dione mean planes being 8.4 (1)°. In the crystal, pairs of N—H(...)O hydrogen bonds link mol­ecules into inversion dimers. These dimers are futher linked via C—H(...)O inter­actions, forming a three-dimensional network.

Related literature

For the naphthalene group as a fluoro­phore, see: Li et al. (2010 [triangle]); Iijima et al. (2010 [triangle]). For a related structure, see: Xu et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1601-scheme1.jpg

Experimental

Crystal data

  • C14H11N3O3
  • M r = 269.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1601-efi1.jpg
  • a = 11.5122 (7) Å
  • b = 6.0233 (3) Å
  • c = 17.9955 (10) Å
  • β = 96.773 (5)°
  • V = 1239.13 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.959, T max = 0.969
  • 4288 measured reflections
  • 2136 independent reflections
  • 1053 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.067
  • S = 0.72
  • 2136 reflections
  • 186 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020118/su2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020118/su2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Key Project of Science and Technology of Anhui, (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

supplementary crystallographic information

Comment

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li et al., 2010; Iijima et al., 2010). As part of an ongoing study of Schiff bases incorporating the naphthalene group (Xu et al., 2009), we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. It can be seen to display a trans configuration about the C\bN bond. The bond lengths are normal (Allen et al., 1987). There is an intramolecular O-H···N hydrogen bond (Table 1) and the molecule is relatively planar; dihedral angle involving the naphthalene mean plane and the imidazolidine-2,4-dione group mean plane being 8.4 (1)°. In the crystal structure of the title compound N—H···O intermolecular hydrongen bonds (Table 1) link two molecules to form dimmers situated about an inversion center. The molecules are further linked by weak C-H···O interactions to form a three-dimensional network (Fig. 2).

Experimental

The solution of 1-Aminohydantoin hydrochloride (0.151 g, 1 mmol) in 5 ml of ethanol was added slowly to a solution containing 2-hydro-1- naphthaldehyde (0.172 g, 1 mmol) in 15 ml of absolute ethanol under heating and stirring. The mixture was then refluxed for 2 h. Afterwards the mixture was cooled to rt and the resulting solution to stand in air. After 15 days yellow block-shaped crystals were formed, on slow evaporation of the solvent.

Refinement

The N3 H-atom was located in a difference Fourier map and freely refined: N-H = 0.89 (2) Å. All other H-atoms were placed in calculated positions and treated as riding: O—H = 0.82 Å, C—H = 0.93 or 0.97 Å, with Uiso(H) = 1.5 Ueq(parent O-atom) and = 1.2Ueq(parent C-atom).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. The intramolecular O-H···N hydrogen bond is shown as a dashed line (see Table 1 for details).
Fig. 2.
Crystal packing viewed along the b-axis of the title compound. The intra- and intermolecular hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C14H11N3O3F(000) = 560
Mr = 269.26Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1596 reflections
a = 11.5122 (7) Åθ = 3.1–29.0°
b = 6.0233 (3) ŵ = 0.11 mm1
c = 17.9955 (10) ÅT = 293 K
β = 96.773 (5)°Block, yellow
V = 1239.13 (12) Å30.40 × 0.30 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Gemini S Ultra diffractometer2136 independent reflections
Radiation source: fine-focus sealed tube1053 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 15.9149 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = −13→13
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = 0→6
Tmin = 0.959, Tmax = 0.969l = 0→21
4288 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 0.72w = 1/[σ2(Fo2) + (0.0266P)2] where P = (Fo2 + 2Fc2)/3
2136 reflections(Δ/σ)max = 0.002
186 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = −0.13 e Å3

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm CrysAlisPro (Oxford Diffraction, 2009).
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.59888 (11)0.25607 (18)0.48396 (8)0.0491 (5)
O20.40014 (13)0.1526 (2)0.68676 (8)0.0710 (7)
O30.80499 (13)0.8397 (2)0.49453 (8)0.0645 (6)
N10.67397 (13)0.6177 (2)0.57838 (9)0.0420 (6)
N20.59925 (13)0.4517 (2)0.59460 (9)0.0425 (6)
N30.48790 (15)0.1552 (3)0.57835 (10)0.0454 (7)
C10.79653 (19)1.2321 (3)0.80751 (14)0.0665 (10)
C20.8627 (2)1.4184 (4)0.79511 (16)0.0705 (10)
C30.90328 (19)1.4454 (3)0.72772 (16)0.0626 (9)
C40.87808 (17)1.2884 (3)0.66974 (14)0.0504 (9)
C50.80840 (16)1.1006 (3)0.68128 (12)0.0434 (8)
C60.77027 (17)1.0762 (3)0.75298 (13)0.0549 (9)
C70.91986 (18)1.3147 (3)0.59955 (15)0.0606 (10)
C80.89532 (17)1.1653 (4)0.54362 (13)0.0589 (9)
C90.82579 (17)0.9788 (3)0.55419 (13)0.0495 (9)
C100.78023 (16)0.9449 (3)0.62117 (12)0.0413 (8)
C110.70303 (15)0.7611 (3)0.63076 (11)0.0436 (7)
C120.56648 (16)0.2867 (3)0.54520 (12)0.0398 (8)
C130.46509 (18)0.2336 (3)0.64613 (12)0.0503 (9)
C140.53798 (18)0.4406 (3)0.66051 (11)0.0496 (8)
H10.769601.213100.853800.0800*
H20.879101.524000.832600.0850*
H30.948401.569200.719700.0750*
H3N0.4590 (16)0.028 (3)0.5590 (11)0.065 (7)*
H40.767700.731800.506300.0970*
H60.726700.952100.763000.0660*
H70.965401.437900.591500.0730*
H80.924601.186300.498100.0710*
H110.673100.745200.676300.0520*
H14A0.489200.570400.664400.0600*
H14B0.592200.426900.705800.0600*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0538 (10)0.0529 (8)0.0415 (10)−0.0044 (7)0.0094 (8)−0.0084 (7)
O20.0901 (13)0.0776 (10)0.0488 (11)−0.0257 (9)0.0233 (9)0.0057 (9)
O30.0725 (12)0.0686 (10)0.0544 (11)−0.0094 (8)0.0156 (9)−0.0054 (9)
N10.0401 (10)0.0373 (9)0.0473 (12)−0.0016 (8)0.0000 (9)−0.0017 (9)
N20.0467 (11)0.0387 (10)0.0424 (12)−0.0071 (9)0.0067 (9)−0.0046 (9)
N30.0522 (12)0.0420 (11)0.0421 (13)−0.0091 (9)0.0061 (10)−0.0013 (10)
C10.0649 (16)0.0670 (16)0.0662 (18)−0.0015 (14)0.0014 (14)−0.0187 (14)
C20.0648 (18)0.0583 (16)0.083 (2)0.0033 (13)−0.0137 (16)−0.0216 (15)
C30.0477 (15)0.0391 (13)0.095 (2)−0.0026 (11)−0.0162 (15)−0.0068 (15)
C40.0383 (14)0.0375 (13)0.0718 (18)0.0023 (11)−0.0083 (12)0.0001 (13)
C50.0343 (12)0.0361 (12)0.0576 (16)0.0059 (10)−0.0042 (11)−0.0009 (11)
C60.0523 (15)0.0508 (14)0.0602 (17)−0.0031 (11)0.0014 (13)−0.0107 (13)
C70.0455 (15)0.0441 (14)0.090 (2)−0.0063 (11)−0.0017 (15)0.0105 (14)
C80.0478 (14)0.0590 (15)0.0704 (18)−0.0027 (12)0.0097 (13)0.0143 (14)
C90.0432 (14)0.0457 (13)0.0586 (17)0.0027 (11)0.0013 (12)−0.0004 (12)
C100.0328 (12)0.0372 (12)0.0532 (15)−0.0012 (10)0.0017 (11)0.0029 (11)
C110.0457 (13)0.0405 (11)0.0441 (14)0.0024 (11)0.0037 (11)−0.0020 (11)
C120.0377 (13)0.0386 (13)0.0417 (14)0.0016 (10)−0.0010 (11)0.0013 (11)
C130.0601 (16)0.0494 (14)0.0406 (15)−0.0026 (12)0.0029 (12)0.0028 (12)
C140.0585 (15)0.0488 (13)0.0410 (14)−0.0022 (11)0.0036 (12)−0.0052 (10)

Geometric parameters (Å, °)

O1—C121.219 (3)C5—C101.440 (3)
O2—C131.209 (3)C5—C61.419 (3)
O3—C91.361 (3)C7—C81.355 (3)
O3—H40.8200C8—C91.405 (3)
N1—N21.3726 (19)C9—C101.385 (3)
N1—C111.293 (2)C10—C111.443 (3)
N2—C121.357 (2)C13—C141.508 (3)
N2—C141.451 (3)C1—H10.9300
N3—C131.362 (3)C2—H20.9300
N3—C121.389 (3)C3—H30.9300
N3—H3N0.890 (18)C6—H60.9300
C1—C61.366 (3)C7—H70.9300
C1—C21.389 (3)C8—H80.9300
C2—C31.360 (4)C11—H110.9300
C3—C41.413 (3)C14—H14A0.9700
C4—C71.413 (4)C14—H14B0.9700
C4—C51.416 (3)
C9—O3—H4109.00N2—C12—N3106.33 (17)
N2—N1—C11116.51 (16)O1—C12—N2127.76 (17)
N1—N2—C14125.77 (14)O1—C12—N3125.91 (18)
C12—N2—C14112.17 (15)O2—C13—N3126.88 (18)
N1—N2—C12121.80 (16)O2—C13—C14126.97 (19)
C12—N3—C13113.02 (17)N3—C13—C14106.15 (17)
C13—N3—H3N123.1 (13)N2—C14—C13102.24 (15)
C12—N3—H3N123.7 (13)C2—C1—H1119.00
C2—C1—C6121.3 (2)C6—C1—H1119.00
C1—C2—C3119.5 (2)C1—C2—H2120.00
C2—C3—C4121.1 (2)C3—C2—H2120.00
C3—C4—C5119.8 (2)C2—C3—H3119.00
C3—C4—C7121.57 (18)C4—C3—H3119.00
C5—C4—C7118.64 (19)C1—C6—H6119.00
C4—C5—C10119.44 (19)C5—C6—H6119.00
C4—C5—C6117.23 (19)C4—C7—H7119.00
C6—C5—C10123.33 (17)C8—C7—H7119.00
C1—C6—C5121.07 (18)C7—C8—H8120.00
C4—C7—C8121.78 (19)C9—C8—H8120.00
C7—C8—C9120.2 (2)N1—C11—H11119.00
C8—C9—C10121.05 (19)C10—C11—H11119.00
O3—C9—C10123.12 (17)N2—C14—H14A111.00
O3—C9—C8115.82 (19)N2—C14—H14B111.00
C5—C10—C9118.88 (17)C13—C14—H14A111.00
C5—C10—C11119.83 (18)C13—C14—H14B111.00
C9—C10—C11121.27 (18)H14A—C14—H14B109.00
N1—C11—C10122.37 (18)
C11—N1—N2—C12−177.23 (16)C7—C4—C5—C10−1.2 (3)
C11—N1—N2—C149.1 (2)C3—C4—C7—C8−179.6 (2)
N2—N1—C11—C10−179.57 (16)C5—C4—C7—C8−0.2 (3)
N1—N2—C12—O12.8 (3)C4—C5—C6—C12.3 (3)
N1—N2—C12—N3−177.61 (15)C10—C5—C6—C1−178.07 (19)
C14—N2—C12—O1177.26 (19)C4—C5—C10—C92.3 (3)
C14—N2—C12—N3−3.1 (2)C4—C5—C10—C11−175.93 (17)
N1—N2—C14—C13176.87 (16)C6—C5—C10—C9−177.34 (18)
C12—N2—C14—C132.7 (2)C6—C5—C10—C114.4 (3)
C13—N3—C12—O1−178.02 (19)C4—C7—C8—C90.6 (3)
C13—N3—C12—N22.4 (2)C7—C8—C9—O3179.31 (19)
C12—N3—C13—O2179.8 (2)C7—C8—C9—C100.6 (3)
C12—N3—C13—C14−0.7 (2)O3—C9—C10—C5179.36 (17)
C6—C1—C2—C3−0.7 (3)O3—C9—C10—C11−2.4 (3)
C2—C1—C6—C5−0.9 (3)C8—C9—C10—C5−2.1 (3)
C1—C2—C3—C40.8 (3)C8—C9—C10—C11176.19 (18)
C2—C3—C4—C50.7 (3)C5—C10—C11—N1179.33 (17)
C2—C3—C4—C7−179.9 (2)C9—C10—C11—N11.1 (3)
C3—C4—C5—C6−2.2 (3)O2—C13—C14—N2178.40 (19)
C3—C4—C5—C10178.15 (18)N3—C13—C14—N2−1.1 (2)
C7—C4—C5—C6178.47 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.890 (18)1.962 (18)2.851 (2)177.9 (19)
O3—H4···N10.821.912.622 (2)145
C6—H6···O2ii0.932.553.469 (2)169
C14—H14B···O2ii0.972.363.038 (2)127

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2180).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Iijima, T., Momotake, A., Shinohara, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603–1609. [PubMed]
  • Li, L., Dang, Y.-Q., Li, H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett.51, 618–621.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65, o1047. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography