PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1832.
Published online 2010 June 26. doi:  10.1107/S1600536810024487
PMCID: PMC3006987

1,3,3-Trimethyl-1,2,3,4-tetra­hydro­pyrido[1,2-a]benzimidazol-1-ol

Abstract

In the title compound, C14H18N2O, the benzimidazole grouping is close to planar, with a maximum deviation of 0.042 Å; the six-membered non-aromatic ring adopts an envelope conformation. In the crystal structure, mol­ecules are linked into infinite sheets lying parallel to the bc plane by O—H(...)N and C—H(...)O hydrogen bonds.

Related literature

For applications of benzimidazole derivatives, see: Horton et al. (2003 [triangle]); Insuasty et al. (2008a [triangle],b [triangle]). For the preparation of the title compound, see: Grech et al. (1994 [triangle]). For ring conformations, see Cremer & Pople (1975 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1832-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O
  • M r = 230.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1832-efi1.jpg
  • a = 9.615 (5) Å
  • b = 8.194 (4) Å
  • c = 15.965 (8) Å
  • β = 99.601 (12)°
  • V = 1240.2 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100 K
  • 0.38 × 0.12 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.971, T max = 0.995
  • 13460 measured reflections
  • 3597 independent reflections
  • 2612 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.117
  • S = 1.02
  • 3597 reflections
  • 226 parameters
  • All H-atom parameters refined
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810024487/hb5508sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024487/hb5508Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SHM and RMG thank Universiti Sains Malaysia (USM) for the University Grant (1001/PTEKIND/8140152). HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Benzimidazole derivatives are an important class of bioactive molecules and are well known due to their wide range of pharmacological activities as an anti-ulcers, anti-hypertensive, anti-viral, anti-fungal, anti-cancer, and anti-histaminic (Horton et al., 2003; Insuasty et al., 2008a, b) agents. Here we report the synthesis and the crystal structure of title compound.

In the title compound (Fig. 1), the benzimidazole group is essentially coplanar (N1/C1–C6/N2/C11) with the maximum deviation of 0.042 Å at atom C6. The N2/C7–C11 ring adopts an envelope conformation with Q=0.4933 (14) Å, θ=52.81 (15)° and [var phi]=182.3 (2)° (Cremer & Pople, 1975).

In the crystal structure, the molecules are linked into infinite two-dimensional planes parallel to bc plane by the intermolecular O1—H1O1···N1 and C5—H5A···O1 hydrogen bonds (Fig. 2, Table 1).

Experimental

A mixture of o-phenylenediamine (0.108 g m) and dimedone (0.140 g m) in molar ratio 1:1 was refluxed in a mixture of acetic acid-ethanol (1:1 v/v) for 3 h (Grech et al., 1994). The reaction mixture was dried on rotavapor at low pressure and further fractionated successively with diethyl ether, chloroform and ethanol. The ethanol fraction was dried on rotavapor and the dry mass so obtained was crystallized in methanol:chloroform (1:1) mixture to give yellow needles of (I) (55%, m.p. 451 K).

Refinement

All hydrogen atoms were located from the difference Fourier map and was refined freely.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the b axis, showing the molecules linked into sheets lying parallel to bc. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H18N2OF(000) = 496
Mr = 230.30Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2162 reflections
a = 9.615 (5) Åθ = 3.1–29.6°
b = 8.194 (4) ŵ = 0.08 mm1
c = 15.965 (8) ÅT = 100 K
β = 99.601 (12)°Needle, yellow
V = 1240.2 (11) Å30.38 × 0.12 × 0.07 mm
Z = 4

Data collection

Bruker APEXII DUO CCD diffractometer3597 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
graphiteRint = 0.052
[var phi] and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −13→13
Tmin = 0.971, Tmax = 0.995k = −11→10
13460 measured reflectionsl = −22→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.02w = 1/[σ2(Fo2) + (0.0528P)2 + 0.2357P] where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.65445 (9)0.44319 (11)0.12156 (6)0.0178 (2)
N10.40305 (10)0.05504 (14)0.22183 (7)0.0176 (2)
N20.54560 (10)0.19700 (13)0.15038 (6)0.0148 (2)
C10.32424 (12)0.11377 (16)0.14618 (8)0.0160 (3)
C20.17999 (13)0.09810 (17)0.11474 (9)0.0199 (3)
C30.12707 (13)0.17745 (18)0.03945 (9)0.0215 (3)
C40.21420 (13)0.27314 (18)−0.00320 (8)0.0199 (3)
C50.35783 (13)0.28830 (17)0.02639 (8)0.0179 (3)
C60.41136 (12)0.20479 (15)0.10110 (8)0.0152 (2)
C70.67647 (12)0.27365 (16)0.13019 (8)0.0153 (3)
C80.79944 (12)0.23815 (16)0.20337 (8)0.0164 (3)
C90.79390 (12)0.07980 (16)0.25468 (8)0.0165 (3)
C100.65512 (13)0.08393 (18)0.29055 (8)0.0186 (3)
C110.53240 (12)0.10891 (16)0.22157 (8)0.0157 (3)
C120.70543 (14)0.21133 (19)0.04460 (9)0.0208 (3)
C130.80018 (14)−0.07437 (18)0.20160 (9)0.0218 (3)
C140.91813 (13)0.08019 (19)0.32872 (9)0.0224 (3)
H1A0.0269 (15)0.1672 (18)0.0155 (9)0.020 (4)*
H2A0.1203 (16)0.033 (2)0.1467 (10)0.026 (4)*
H4A0.1727 (15)0.3345 (18)−0.0553 (9)0.016 (4)*
H5A0.4140 (15)0.3569 (19)−0.0037 (9)0.017 (4)*
H8A0.8923 (16)0.241 (2)0.1794 (10)0.025 (4)*
H8B0.8028 (15)0.334 (2)0.2438 (10)0.025 (4)*
H10A0.6384 (15)−0.0185 (19)0.3209 (9)0.018 (4)*
H10B0.6583 (16)0.177 (2)0.3319 (10)0.024 (4)*
H12A0.7260 (17)0.095 (2)0.0457 (11)0.030 (4)*
H12B0.7853 (17)0.279 (2)0.0300 (11)0.032 (4)*
H12C0.6228 (18)0.233 (2)−0.0008 (11)0.034 (5)*
H13A0.7168 (16)−0.0878 (19)0.1571 (10)0.024 (4)*
H13B0.8059 (15)−0.171 (2)0.2371 (10)0.024 (4)*
H13C0.8856 (17)−0.074 (2)0.1725 (11)0.032 (4)*
H14A0.9187 (16)0.180 (2)0.3648 (10)0.028 (4)*
H14B0.9107 (17)−0.017 (2)0.3658 (11)0.034 (5)*
H14C1.0108 (18)0.082 (2)0.3068 (11)0.036 (5)*
H1O10.640 (2)0.487 (3)0.1756 (13)0.050 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0215 (4)0.0149 (5)0.0175 (5)0.0005 (3)0.0047 (3)0.0024 (4)
N10.0167 (5)0.0195 (6)0.0166 (5)−0.0010 (4)0.0028 (4)0.0018 (4)
N20.0138 (4)0.0170 (5)0.0130 (5)−0.0010 (4)0.0009 (4)0.0014 (4)
C10.0169 (5)0.0153 (6)0.0158 (6)0.0004 (4)0.0024 (4)−0.0007 (5)
C20.0155 (5)0.0206 (7)0.0232 (7)−0.0010 (5)0.0020 (5)−0.0017 (6)
C30.0171 (6)0.0229 (7)0.0229 (7)0.0009 (5)−0.0014 (5)−0.0041 (6)
C40.0208 (6)0.0210 (7)0.0164 (6)0.0036 (5)−0.0018 (5)−0.0009 (5)
C50.0202 (6)0.0173 (7)0.0157 (6)0.0013 (5)0.0014 (5)0.0001 (5)
C60.0148 (5)0.0160 (6)0.0144 (6)0.0001 (4)0.0010 (4)−0.0019 (5)
C70.0154 (5)0.0150 (6)0.0157 (6)−0.0013 (4)0.0036 (4)0.0021 (5)
C80.0157 (5)0.0162 (6)0.0167 (6)−0.0007 (4)0.0007 (4)0.0004 (5)
C90.0145 (5)0.0169 (6)0.0170 (6)0.0002 (4)0.0000 (4)0.0018 (5)
C100.0176 (5)0.0229 (7)0.0147 (6)−0.0007 (5)0.0012 (4)0.0041 (6)
C110.0168 (5)0.0153 (6)0.0150 (6)0.0006 (4)0.0030 (4)0.0017 (5)
C120.0223 (6)0.0249 (8)0.0164 (6)0.0014 (5)0.0067 (5)−0.0008 (6)
C130.0230 (6)0.0177 (7)0.0241 (7)0.0018 (5)0.0017 (5)0.0002 (6)
C140.0185 (6)0.0244 (8)0.0220 (7)0.0007 (5)−0.0030 (5)0.0038 (6)

Geometric parameters (Å, °)

O1—C71.4085 (17)C8—C91.5400 (19)
O1—H1O10.96 (2)C8—H8A1.029 (15)
N1—C111.3203 (16)C8—H8B1.012 (16)
N1—C11.3997 (17)C9—C131.528 (2)
N2—C111.3700 (17)C9—C141.5340 (18)
N2—C61.3965 (16)C9—C101.5378 (18)
N2—C71.4890 (16)C10—C111.4878 (18)
C1—C21.4000 (18)C10—H10A0.995 (16)
C1—C61.4060 (18)C10—H10B1.004 (16)
C2—C31.387 (2)C12—H12A0.976 (18)
C2—H2A0.988 (16)C12—H12B1.006 (17)
C3—C41.404 (2)C12—H12C0.998 (17)
C3—H1A0.979 (14)C13—H13A0.984 (16)
C4—C51.3886 (18)C13—H13B0.967 (17)
C4—H4A0.997 (15)C13—H13C1.009 (17)
C5—C61.3968 (18)C14—H14A1.000 (17)
C5—H5A0.961 (15)C14—H14B1.001 (18)
C7—C121.5271 (19)C14—H14C1.010 (17)
C7—C81.5450 (18)
C7—O1—H1O1108.6 (12)H8A—C8—H8B106.5 (12)
C11—N1—C1104.90 (11)C13—C9—C14109.35 (11)
C11—N2—C6106.65 (10)C13—C9—C10109.98 (11)
C11—N2—C7126.90 (10)C14—C9—C10109.00 (11)
C6—N2—C7126.43 (10)C13—C9—C8113.17 (11)
N1—C1—C2129.74 (12)C14—C9—C8108.46 (11)
N1—C1—C6109.93 (11)C10—C9—C8106.78 (10)
C2—C1—C6120.29 (12)C11—C10—C9110.96 (11)
C3—C2—C1117.79 (12)C11—C10—H10A107.7 (8)
C3—C2—H2A122.8 (9)C9—C10—H10A112.6 (8)
C1—C2—H2A119.4 (9)C11—C10—H10B108.4 (9)
C2—C3—C4121.33 (12)C9—C10—H10B109.2 (9)
C2—C3—H1A119.5 (9)H10A—C10—H10B108.0 (12)
C4—C3—H1A119.1 (9)N1—C11—N2113.35 (11)
C5—C4—C3121.67 (13)N1—C11—C10125.66 (12)
C5—C4—H4A118.4 (8)N2—C11—C10120.98 (11)
C3—C4—H4A119.9 (8)C7—C12—H12A112.3 (10)
C4—C5—C6116.79 (12)C7—C12—H12B106.4 (10)
C4—C5—H5A119.5 (9)H12A—C12—H12B112.6 (14)
C6—C5—H5A123.7 (9)C7—C12—H12C110.3 (10)
N2—C6—C5132.67 (11)H12A—C12—H12C108.8 (14)
N2—C6—C1105.13 (11)H12B—C12—H12C106.2 (14)
C5—C6—C1122.06 (11)C9—C13—H13A112.9 (9)
O1—C7—N2108.58 (10)C9—C13—H13B110.6 (9)
O1—C7—C12106.80 (10)H13A—C13—H13B106.9 (13)
N2—C7—C12109.84 (10)C9—C13—H13C111.5 (10)
O1—C7—C8110.08 (10)H13A—C13—H13C107.1 (13)
N2—C7—C8108.95 (10)H13B—C13—H13C107.4 (13)
C12—C7—C8112.51 (11)C9—C14—H14A111.9 (9)
C9—C8—C7118.09 (10)C9—C14—H14B109.3 (10)
C9—C8—H8A108.9 (9)H14A—C14—H14B107.6 (13)
C7—C8—H8A108.5 (9)C9—C14—H14C110.6 (10)
C9—C8—H8B108.3 (9)H14A—C14—H14C105.5 (13)
C7—C8—H8B106.0 (9)H14B—C14—H14C111.8 (14)
C11—N1—C1—C2−177.80 (14)C6—N2—C7—C12−58.00 (16)
C11—N1—C1—C6−0.14 (15)C11—N2—C7—C80.12 (17)
N1—C1—C2—C3176.20 (13)C6—N2—C7—C8178.34 (11)
C6—C1—C2—C3−1.2 (2)O1—C7—C8—C9148.09 (11)
C1—C2—C3—C4−1.3 (2)N2—C7—C8—C929.14 (15)
C2—C3—C4—C52.2 (2)C12—C7—C8—C9−92.92 (14)
C3—C4—C5—C6−0.5 (2)C7—C8—C9—C1364.20 (14)
C11—N2—C6—C5173.80 (14)C7—C8—C9—C14−174.28 (11)
C7—N2—C6—C5−4.7 (2)C7—C8—C9—C10−56.95 (15)
C11—N2—C6—C1−1.75 (14)C13—C9—C10—C11−68.67 (15)
C7—N2—C6—C1179.73 (11)C14—C9—C10—C11171.46 (11)
C4—C5—C6—N2−176.96 (13)C8—C9—C10—C1154.49 (14)
C4—C5—C6—C1−2.03 (19)C1—N1—C11—N2−1.04 (15)
N1—C1—C6—N21.20 (14)C1—N1—C11—C10177.57 (12)
C2—C1—C6—N2179.11 (11)C6—N2—C11—N11.82 (15)
N1—C1—C6—C5−174.94 (11)C7—N2—C11—N1−179.67 (11)
C2—C1—C6—C53.0 (2)C6—N2—C11—C10−176.86 (12)
C11—N2—C7—O1−119.77 (13)C7—N2—C11—C101.64 (19)
C6—N2—C7—O158.45 (16)C9—C10—C11—N1150.69 (13)
C11—N2—C7—C12123.78 (14)C9—C10—C11—N2−30.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.97 (2)1.84 (2)2.803 (2)174 (2)
C5—H5A···O1ii0.962 (15)2.499 (15)3.216 (2)131.3 (11)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5508).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Grech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem.31, 509–511.
  • Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev.103, 893–930. [PubMed]
  • Insuasty, B., Orozco, F., Lizarazo, C., Quiroga, J., Abonía, R., Hursthouse, M., Nogueras, M. & Cobo, J. (2008a). Bioorg. Med. Chem.16, 8492–8500. [PubMed]
  • Insuasty, B., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2008b). Eur. J. Med. Chem.43, 1955–1962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography