PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1880.
Published online 2010 June 30. doi:  10.1107/S1600536810025213
PMCID: PMC3006986

N′-[(E)-1-(5-Chloro-2-hy­droxy­phen­yl)ethyl­idene]pyridine-3-carbohydrazide monohydrate

Abstract

In the title compound, C14H12ClN3O2·H2O, the benzene ring and the pyridine rings are oriented at a dihedral angle of 57.73 (12)° and an intra­molecular O—H(...)N hydrogen bond generates an S(6) ring. In the crystal, the water mol­ecule forms O—H(...)O and O—H(...)N hydrogen bonds to the organic mol­ecule, leading to chains containing R 4 4(16) loops. In addition, weak aromatic π–π stacking inter­actions between the centroids of pyridine rings [at distance of 3.864 (2) and 4.013 (2) Å] and C—H(...)π inter­actions occur.

Related literature

For background to Schiff bases and for related structures, see: Shafiq et al. (2009a [triangle],b [triangle]): For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1880-scheme1.jpg

Experimental

Crystal data

  • C14H12ClN3O2·H2O
  • M r = 307.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1880-efi1.jpg
  • a = 7.1693 (5) Å
  • b = 7.4964 (4) Å
  • c = 14.5966 (9) Å
  • α = 90.138 (2)°
  • β = 95.835 (1)°
  • γ = 115.755 (2)°
  • V = 701.94 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.28 × 0.18 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.942, T max = 0.959
  • 10105 measured reflections
  • 2491 independent reflections
  • 2151 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.135
  • S = 1.17
  • 2491 reflections
  • 198 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810025213/hb5528sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810025213/hb5528Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

We have reported crystal structures of Schiff bases containing pyridne (Shafiq et al., 2009a, 2009b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the group A (C1–C8/O1/CL1) of 5-chloro-2-hydroxyacetophenone, the central group B (N1/N2/C9/O2) and the pyridine ring C (C10—C14/N3) are planar with r. m. s. deviation of 0.0330, 0.0182 and 0.0082 Å, respectively. The dihedral angle between A/B, A/C and B/C is 6.62 (11), 58.08 (10) and 52.98 (14)°, respectively. There exist intramolecular H-bonding of O—H···N type forming an S(6) ring motif (Bernstein et al., 1995). The water molecule acts as donar as well as accepter and therefore interconnects three molecules. Due to intra as well as intermolecular H-bondings of O—H···O and O—H···N types (Table 1, Fig. 2), the title compound is stabilized in infinite one dimensional polymeric chains. In the polymeric chains R44(16) ring motifs are formed. The π–π interactions exist between the centroids of pyridine rings at distance of 3.864 (2) Å [symmetry: -x, -y, 1 - z] and at 4.013 (2) Å [symmetry: 1 - x, 1 - y, 1 - z]. The C—H···π interaction (Table 1) also plays an important role in stabilizing the structure.

Experimental

To a hot stirred solution of 5-chloro-2-hydroxyacetophenone (1.71 g, 0.01 mole) in ethanol, 25 ml nicotinic acid hydrazide (1.37 g, 0.01 mol) was added. The resultant mixture was then heated under reflux for 7–8 h. The reaction was monitored through TLC. The precipitate were formed were collected by suction filteration. The resultant crude material was dried and recrystalized in 1,4-dioxan:ethanol(1:2) to affoard light brown needles of (I).

Refinement

The coordinates of H-atoms of water molecule were refined. The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Figures

Fig. 1.
View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line shows the intramolecular H-bond.
Fig. 2.
The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains with different ring motifs.

Crystal data

C14H12ClN3O2·H2OZ = 2
Mr = 307.73F(000) = 320
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1693 (5) ÅCell parameters from 1770 reflections
b = 7.4964 (4) Åθ = 2.6–28.4°
c = 14.5966 (9) ŵ = 0.29 mm1
α = 90.138 (2)°T = 296 K
β = 95.835 (1)°Needle, light brown
γ = 115.755 (2)°0.28 × 0.18 × 0.14 mm
V = 701.94 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2491 independent reflections
Radiation source: fine-focus sealed tube2151 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −8→8
Tmin = 0.942, Tmax = 0.959l = −16→17
10105 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.17w = 1/[σ2(Fo2) + (0.0375P)2 + 0.8617P] where P = (Fo2 + 2Fc2)/3
2491 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.33027 (14)0.26260 (13)−0.24936 (5)0.0523 (3)
O10.3445 (3)0.2717 (4)0.01706 (15)0.0491 (8)
O20.4191 (3)0.2364 (4)0.25756 (15)0.0544 (8)
N10.1131 (3)0.2425 (3)0.14368 (15)0.0338 (7)
N20.0986 (4)0.2273 (4)0.23701 (15)0.0347 (7)
N30.2974 (4)0.0892 (5)0.53373 (18)0.0523 (10)
C1−0.0064 (4)0.2462 (4)−0.01053 (18)0.0311 (8)
C20.1854 (4)0.2739 (4)−0.04006 (19)0.0365 (9)
C30.2156 (5)0.3040 (5)−0.1323 (2)0.0505 (11)
C40.0595 (6)0.3026 (5)−0.1958 (2)0.0502 (11)
C5−0.1289 (5)0.2703 (4)−0.16794 (19)0.0391 (9)
C6−0.1630 (4)0.2451 (4)−0.07681 (19)0.0347 (8)
C7−0.0461 (4)0.2199 (4)0.08716 (18)0.0306 (8)
C8−0.2576 (5)0.1709 (6)0.1141 (2)0.0476 (10)
C90.2671 (4)0.2336 (4)0.28988 (19)0.0343 (9)
C100.2551 (4)0.2337 (4)0.39173 (18)0.0341 (9)
C110.2132 (4)0.3709 (5)0.4384 (2)0.0398 (9)
C120.2188 (5)0.3679 (5)0.5328 (2)0.0500 (11)
C130.2599 (5)0.2246 (6)0.5769 (2)0.0537 (13)
C140.2966 (5)0.0971 (5)0.4425 (2)0.0421 (10)
O30.7770 (3)0.2277 (4)0.34221 (16)0.0478 (8)
H10.314330.260590.070120.0736*
H2−0.011870.214460.260250.0416*
H30.343200.32529−0.151400.0608*
H40.081740.32343−0.257330.0605*
H6−0.290670.22721−0.059040.0416*
H8A−0.271450.291110.123620.0715*
H8B−0.275730.101180.170020.0715*
H8C−0.361580.088890.065880.0715*
H110.181800.463390.406440.0478*
H120.195380.460620.566160.0598*
H130.261610.222360.640640.0645*
H140.325500.005450.411250.0505*
H3A0.657 (6)0.217 (5)0.314 (3)0.0574*
H3B0.735 (6)0.139 (5)0.387 (3)0.0574*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0600 (5)0.0632 (5)0.0309 (4)0.0269 (4)−0.0066 (3)0.0055 (3)
O10.0391 (12)0.0743 (16)0.0436 (12)0.0329 (12)0.0093 (10)0.0112 (12)
O20.0426 (12)0.1011 (19)0.0355 (12)0.0456 (13)0.0069 (10)0.0129 (12)
N10.0346 (12)0.0435 (14)0.0252 (12)0.0192 (11)0.0011 (9)0.0024 (10)
N20.0313 (12)0.0509 (14)0.0248 (12)0.0209 (11)0.0026 (9)0.0032 (10)
N30.0568 (17)0.079 (2)0.0347 (14)0.0416 (16)0.0083 (12)0.0156 (14)
C10.0344 (14)0.0286 (14)0.0287 (14)0.0127 (12)0.0015 (11)0.0001 (11)
C20.0393 (16)0.0394 (16)0.0347 (15)0.0204 (13)0.0056 (12)0.0032 (12)
C30.0509 (19)0.069 (2)0.0438 (18)0.0342 (18)0.0205 (15)0.0110 (16)
C40.067 (2)0.063 (2)0.0297 (16)0.0352 (19)0.0135 (15)0.0081 (14)
C50.0493 (18)0.0391 (16)0.0281 (14)0.0199 (14)−0.0012 (12)0.0013 (12)
C60.0338 (14)0.0366 (15)0.0316 (15)0.0141 (12)0.0012 (11)0.0001 (12)
C70.0314 (14)0.0326 (14)0.0282 (14)0.0148 (12)0.0015 (11)0.0004 (11)
C80.0356 (16)0.079 (2)0.0296 (15)0.0264 (16)0.0031 (12)0.0055 (15)
C90.0307 (14)0.0450 (17)0.0301 (14)0.0197 (13)0.0014 (11)0.0039 (12)
C100.0270 (13)0.0469 (17)0.0267 (14)0.0153 (12)−0.0004 (11)0.0020 (12)
C110.0356 (15)0.0473 (17)0.0368 (16)0.0192 (14)0.0000 (12)0.0014 (13)
C120.0470 (18)0.068 (2)0.0382 (17)0.0284 (17)0.0032 (14)−0.0074 (16)
C130.053 (2)0.092 (3)0.0261 (16)0.041 (2)0.0038 (14)0.0042 (16)
C140.0458 (17)0.057 (2)0.0322 (16)0.0302 (16)0.0057 (13)0.0064 (14)
O30.0364 (12)0.0757 (17)0.0380 (12)0.0304 (12)0.0052 (9)0.0118 (11)

Geometric parameters (Å, °)

Cl1—C51.755 (4)C5—C61.376 (4)
O1—C21.349 (4)C7—C81.492 (5)
O2—C91.223 (4)C9—C101.498 (4)
O1—H10.8200C10—C111.385 (4)
O3—H3A0.89 (5)C10—C141.382 (4)
O3—H3B0.91 (4)C11—C121.375 (4)
N1—N21.378 (3)C12—C131.377 (5)
N1—C71.285 (4)C3—H30.9300
N2—C91.348 (4)C4—H40.9300
N3—C141.333 (4)C6—H60.9300
N3—C131.330 (5)C8—H8C0.9600
N2—H20.8600C8—H8A0.9600
C1—C71.479 (4)C8—H8B0.9600
C1—C61.403 (4)C11—H110.9300
C1—C21.412 (4)C12—H120.9300
C2—C31.389 (4)C13—H130.9300
C3—C41.375 (5)C14—H140.9300
C4—C51.370 (6)
C2—O1—H1109.00C9—C10—C14119.0 (3)
H3A—O3—H3B102 (4)C9—C10—C11122.9 (3)
N2—N1—C7120.6 (3)C10—C11—C12118.8 (3)
N1—N2—C9116.3 (3)C11—C12—C13118.5 (3)
C13—N3—C14116.9 (3)N3—C13—C12123.9 (3)
N1—N2—H2122.00N3—C14—C10123.7 (3)
C9—N2—H2122.00C2—C3—H3120.00
C2—C1—C6118.2 (2)C4—C3—H3120.00
C2—C1—C7122.3 (3)C5—C4—H4120.00
C6—C1—C7119.5 (3)C3—C4—H4120.00
C1—C2—C3119.6 (3)C1—C6—H6120.00
O1—C2—C3117.1 (3)C5—C6—H6120.00
O1—C2—C1123.3 (3)C7—C8—H8B109.00
C2—C3—C4120.9 (3)C7—C8—H8C109.00
C3—C4—C5119.7 (3)H8A—C8—H8B110.00
Cl1—C5—C6119.2 (3)H8A—C8—H8C109.00
Cl1—C5—C4119.7 (2)H8B—C8—H8C109.00
C4—C5—C6121.1 (3)C7—C8—H8A109.00
C1—C6—C5120.4 (3)C10—C11—H11121.00
N1—C7—C8124.7 (2)C12—C11—H11121.00
C1—C7—C8120.6 (3)C13—C12—H12121.00
N1—C7—C1114.7 (3)C11—C12—H12121.00
O2—C9—N2122.8 (3)N3—C13—H13118.00
O2—C9—C10121.7 (3)C12—C13—H13118.00
N2—C9—C10115.5 (3)N3—C14—H14118.00
C11—C10—C14118.1 (3)C10—C14—H14118.00
C7—N1—N2—C9173.6 (3)O1—C2—C3—C4178.1 (3)
N2—N1—C7—C1178.2 (2)C1—C2—C3—C4−1.5 (5)
N2—N1—C7—C8−1.8 (4)C2—C3—C4—C5−0.3 (5)
N1—N2—C9—O2−5.8 (4)C3—C4—C5—Cl1−178.5 (3)
N1—N2—C9—C10175.2 (2)C3—C4—C5—C62.0 (5)
C14—N3—C13—C120.8 (6)Cl1—C5—C6—C1178.6 (2)
C13—N3—C14—C10−1.4 (6)C4—C5—C6—C1−1.9 (4)
C6—C1—C2—O1−178.0 (3)O2—C9—C10—C11126.3 (3)
C6—C1—C2—C31.6 (4)O2—C9—C10—C14−50.7 (4)
C7—C1—C2—O12.4 (4)N2—C9—C10—C11−54.6 (4)
C7—C1—C2—C3−178.0 (3)N2—C9—C10—C14128.4 (3)
C2—C1—C6—C50.1 (4)C9—C10—C11—C12−175.7 (3)
C7—C1—C6—C5179.7 (3)C14—C10—C11—C121.3 (5)
C2—C1—C7—N16.1 (4)C9—C10—C14—N3177.6 (3)
C2—C1—C7—C8−173.9 (3)C11—C10—C14—N30.4 (5)
C6—C1—C7—N1−173.5 (2)C10—C11—C12—C13−1.9 (5)
C6—C1—C7—C86.6 (4)C11—C12—C13—N30.9 (6)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.555 (3)144
N2—H2···O3i0.862.062.898 (4)166
O3—H3A···O20.89 (5)1.88 (5)2.760 (4)171 (3)
O3—H3B···N3ii0.91 (4)2.01 (4)2.885 (4)161 (4)
C8—H8A···Cg2iii0.962.993.763 (4)139

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5528).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496. [PMC free article] [PubMed]
  • Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography