PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m777.
Published online 2010 June 16. doi:  10.1107/S1600536810021549
PMCID: PMC3006985

{N,N′-Bis[1-(2-pyrid­yl)ethyl­idene]propane-1,2-diamine-κ4 N,N′,N′′,N′′′}bis­(thio­cyanato-κN)manganese(II)

Abstract

In the title compound, [Mn(NCS)2(C17H20N4)], the MnII atom is six-coordinated by the N,N′,N′′,N′′′-tetra­dentate Schiff base ligand and by two trans-N atoms from two thio­cyanate anions, forming a distorted octa­hedral geometry. The dihedral angle between the aromatic rings of the Schiff base is 9.5 (3)°.

Related literature

For another complex containing 1,2-bis­(2′-pyridyl­methyl­ene­amino)­propane, see: Ouyang et al. (2002 [triangle]). For related manganese(II) complexes with Schiff bases, see: Louloudi et al. (1999 [triangle]); Sra et al. (2000 [triangle]); Karmakar et al. (2005 [triangle]); Deoghoria et al. (2005 [triangle]). For the synthesis of the Schiff base, see: Gourbatsis et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m777-scheme1.jpg

Experimental

Crystal data

  • [Mn(NCS)2(C17H20N4)]
  • M r = 451.47
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m777-efi1.jpg
  • a = 8.647 (3) Å
  • b = 9.135 (2) Å
  • c = 14.608 (3) Å
  • α = 84.701 (3)°
  • β = 79.407 (3)°
  • γ = 70.509 (3)°
  • V = 1068.6 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 298 K
  • 0.33 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.771, T max = 0.789
  • 11100 measured reflections
  • 4608 independent reflections
  • 2211 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077
  • wR(F 2) = 0.224
  • S = 0.99
  • 4608 reflections
  • 256 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810021549/hb5486sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021549/hb5486Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Dezhou University, People’s Republic of China.

supplementary crystallographic information

Comment

Metal complexes with Schiff bases have been known since 1840 but only one complex derived from 1,2-bis(2'-pyridylmethyleneamino)propane has been reported (Ouyang et al., 2002). In this paper, the title new manganese(II) complex is reported.

In the title complex, Fig. 1, the MnII atom is six-coordinated by four N atoms of the Schiff base ligand 1,2-bis(2'-pyridylmethyleneamino)propane, and by two N atoms from two thiocyanate ligands, forming a distorted octahedral geometry. The coordinate bond lengths (Table 1) are comparable with those observed in other similar manganese(II) complexes with Schiff bases (Louloudi et al., 1999; Sra et al., 2000; Karmakar et al., 2005; Deoghoria et al., 2005).

Experimental

The Schiff base ligand 1,2-bis(2'-pyridylmethyleneamino)propane was synthesized according to the literature method (Gourbatsis et al., 1990). To a stirred methanol solution of the Schiff base ligand (1.0 mmol, 0.280 g) was added a methanol solution of manganese acetate (1.0 mmol, 0.245 g) and ammonium thiocyanate (1.0 mmol, 0.076 g). The mixture was boiled under reflux for 2 h, then cooled to room temperature. Brown blocks of (I) were formed after slow evaporation of the solution in air for a few days.

Refinement

Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Mn(NCS)2(C17H20N4)]Z = 2
Mr = 451.47F(000) = 466
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.647 (3) ÅCell parameters from 1307 reflections
b = 9.135 (2) Åθ = 2.3–24.5°
c = 14.608 (3) ŵ = 0.83 mm1
α = 84.701 (3)°T = 298 K
β = 79.407 (3)°Block, brown
γ = 70.509 (3)°0.33 × 0.30 × 0.30 mm
V = 1068.6 (5) Å3

Data collection

Bruker SMART CCD diffractometer4608 independent reflections
Radiation source: fine-focus sealed tube2211 reflections with I > 2σ(I)
graphiteRint = 0.078
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.771, Tmax = 0.789k = −11→11
11100 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.1044P)2] where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.02210 (10)0.54382 (9)0.27241 (5)0.0601 (3)
N11.2061 (6)0.6565 (5)0.3134 (3)0.0644 (12)
N21.0220 (6)0.7580 (5)0.1819 (3)0.0673 (12)
N30.8157 (6)0.5912 (5)0.1875 (3)0.0701 (13)
N40.9013 (5)0.3471 (5)0.3008 (3)0.0665 (12)
N50.8737 (7)0.6394 (7)0.3994 (4)0.0906 (17)
N61.2282 (6)0.3744 (6)0.1940 (4)0.0772 (15)
S10.6757 (2)0.8093 (2)0.54416 (16)0.1097 (7)
S21.4735 (2)0.1575 (2)0.08162 (12)0.0855 (5)
C11.2937 (8)0.6060 (8)0.3826 (5)0.089 (2)
H11.28830.51480.41510.107*
C21.3917 (9)0.6811 (8)0.4088 (5)0.096 (2)
H21.45080.64220.45780.116*
C31.3997 (8)0.8144 (8)0.3608 (5)0.088 (2)
H31.46540.86770.37650.106*
C41.3109 (7)0.8693 (6)0.2897 (5)0.0750 (17)
H41.31550.96010.25650.090*
C51.2135 (6)0.7880 (6)0.2674 (4)0.0574 (13)
C61.1124 (7)0.8394 (7)0.1905 (4)0.0631 (14)
C71.1270 (9)0.9785 (7)0.1307 (5)0.095 (2)
H7A1.23720.95480.09560.142*
H7B1.10541.06460.16960.142*
H7C1.04771.00500.08880.142*
C80.9234 (8)0.7889 (8)0.1062 (4)0.087 (2)
H80.89130.89960.08800.104*
C91.0322 (10)0.6917 (9)0.0230 (5)0.106 (2)
H9A1.13120.71980.00420.159*
H9B0.97120.7114−0.02810.159*
H9C1.06190.58330.04090.159*
C100.7743 (8)0.7434 (8)0.1372 (5)0.098 (2)
H10A0.72500.73790.08370.118*
H10B0.69350.82130.17790.118*
C110.7315 (7)0.4988 (6)0.1900 (4)0.0617 (14)
C120.5892 (7)0.5241 (7)0.1393 (5)0.0843 (19)
H12A0.58090.61230.09700.126*
H12B0.48800.54280.18330.126*
H12C0.60720.43350.10500.126*
C130.7763 (6)0.3606 (6)0.2541 (4)0.0613 (14)
C140.6956 (7)0.2485 (8)0.2671 (5)0.0826 (18)
H140.61050.25730.23400.099*
C150.7432 (8)0.1242 (8)0.3297 (5)0.094 (2)
H150.68990.04950.33890.112*
C160.8672 (9)0.1124 (8)0.3771 (5)0.094 (2)
H160.90060.03030.41950.112*
C170.9429 (8)0.2251 (7)0.3610 (4)0.0808 (18)
H171.02830.21650.39370.097*
C180.7938 (7)0.7096 (6)0.4577 (4)0.0589 (14)
C191.3320 (7)0.2828 (7)0.1471 (4)0.0631 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0670 (6)0.0649 (6)0.0607 (5)−0.0367 (5)−0.0173 (4)0.0090 (4)
N10.082 (3)0.060 (3)0.064 (3)−0.036 (2)−0.024 (2)0.011 (2)
N20.078 (3)0.075 (3)0.066 (3)−0.041 (3)−0.030 (2)0.012 (2)
N30.075 (3)0.072 (3)0.077 (3)−0.039 (3)−0.026 (3)0.017 (3)
N40.063 (3)0.077 (3)0.071 (3)−0.036 (2)−0.018 (2)0.009 (3)
N50.089 (4)0.110 (5)0.082 (4)−0.051 (4)−0.001 (3)−0.006 (3)
N60.079 (4)0.077 (4)0.086 (4)−0.040 (3)−0.016 (3)0.003 (3)
S10.0955 (14)0.1071 (16)0.1234 (16)−0.0214 (12)−0.0135 (12)−0.0410 (13)
S20.0850 (12)0.0822 (12)0.0928 (12)−0.0285 (10)−0.0153 (9)−0.0139 (9)
C10.116 (5)0.088 (5)0.091 (5)−0.060 (4)−0.049 (4)0.026 (4)
C20.114 (5)0.099 (5)0.102 (5)−0.051 (5)−0.063 (4)0.019 (4)
C30.096 (5)0.078 (5)0.115 (5)−0.047 (4)−0.047 (4)0.001 (4)
C40.080 (4)0.052 (3)0.103 (5)−0.029 (3)−0.030 (4)0.003 (3)
C50.055 (3)0.060 (3)0.062 (3)−0.025 (3)−0.010 (3)−0.006 (3)
C60.065 (3)0.067 (4)0.064 (3)−0.030 (3)−0.015 (3)0.008 (3)
C70.121 (6)0.080 (5)0.103 (5)−0.061 (4)−0.037 (4)0.039 (4)
C80.113 (5)0.080 (5)0.085 (4)−0.049 (4)−0.042 (4)0.027 (4)
C90.143 (7)0.102 (6)0.083 (5)−0.051 (5)−0.026 (5)0.003 (4)
C100.108 (5)0.110 (6)0.110 (5)−0.070 (5)−0.060 (4)0.042 (4)
C110.057 (3)0.059 (3)0.075 (4)−0.026 (3)−0.011 (3)−0.005 (3)
C120.065 (4)0.088 (5)0.112 (5)−0.032 (3)−0.037 (4)0.006 (4)
C130.056 (3)0.064 (4)0.069 (3)−0.032 (3)0.002 (3)−0.004 (3)
C140.067 (4)0.086 (5)0.113 (5)−0.046 (4)−0.021 (4)0.000 (4)
C150.094 (5)0.090 (5)0.113 (6)−0.059 (4)−0.015 (4)0.022 (4)
C160.099 (5)0.089 (5)0.106 (5)−0.054 (4)−0.022 (4)0.034 (4)
C170.087 (4)0.086 (5)0.088 (4)−0.047 (4)−0.034 (4)0.022 (4)
C180.057 (4)0.052 (4)0.075 (4)−0.026 (3)−0.022 (3)0.013 (3)
C190.063 (4)0.061 (4)0.075 (4)−0.030 (3)−0.024 (3)0.013 (3)

Geometric parameters (Å, °)

Mn1—N52.127 (6)C5—C61.495 (7)
Mn1—N62.149 (6)C6—C71.501 (8)
Mn1—N22.258 (5)C7—H7A0.9600
Mn1—N32.260 (4)C7—H7B0.9600
Mn1—N42.334 (4)C7—H7C0.9600
Mn1—N12.346 (4)C8—C101.465 (8)
N1—C11.331 (7)C8—C91.540 (9)
N1—C51.336 (6)C8—H80.9800
N2—C61.274 (6)C9—H9A0.9600
N2—C81.470 (7)C9—H9B0.9600
N3—C111.281 (6)C9—H9C0.9600
N3—C101.476 (7)C10—H10A0.9700
N4—C171.345 (7)C10—H10B0.9700
N4—C131.348 (6)C11—C131.486 (8)
N5—C181.097 (7)C11—C121.493 (7)
N6—C191.164 (7)C12—H12A0.9600
S1—C181.608 (7)C12—H12B0.9600
S2—C191.600 (7)C12—H12C0.9600
C1—C21.376 (8)C13—C141.402 (7)
C1—H10.9300C14—C151.389 (8)
C2—C31.364 (9)C14—H140.9300
C2—H20.9300C15—C161.351 (8)
C3—C41.364 (8)C15—H150.9300
C3—H30.9300C16—C171.376 (8)
C4—C51.389 (7)C16—H160.9300
C4—H40.9300C17—H170.9300
N5—Mn1—N6152.6 (2)H7A—C7—H7B109.5
N5—Mn1—N2102.5 (2)C6—C7—H7C109.5
N6—Mn1—N299.53 (18)H7A—C7—H7C109.5
N5—Mn1—N398.1 (2)H7B—C7—H7C109.5
N6—Mn1—N3103.71 (18)C10—C8—N2109.6 (5)
N2—Mn1—N373.15 (16)C10—C8—C9109.9 (6)
N5—Mn1—N486.78 (19)N2—C8—C9107.8 (5)
N6—Mn1—N485.41 (17)C10—C8—H8109.8
N2—Mn1—N4142.80 (16)N2—C8—H8109.8
N3—Mn1—N469.88 (16)C9—C8—H8109.8
N5—Mn1—N182.92 (18)C8—C9—H9A109.5
N6—Mn1—N189.82 (17)C8—C9—H9B109.5
N2—Mn1—N169.50 (15)H9A—C9—H9B109.5
N3—Mn1—N1141.88 (17)C8—C9—H9C109.5
N4—Mn1—N1147.69 (16)H9A—C9—H9C109.5
C1—N1—C5117.9 (5)H9B—C9—H9C109.5
C1—N1—Mn1125.2 (4)C8—C10—N3110.8 (5)
C5—N1—Mn1116.7 (3)C8—C10—H10A109.5
C6—N2—C8121.8 (5)N3—C10—H10A109.5
C6—N2—Mn1122.4 (4)C8—C10—H10B109.5
C8—N2—Mn1115.5 (3)N3—C10—H10B109.5
C11—N3—C10122.6 (5)H10A—C10—H10B108.1
C11—N3—Mn1122.1 (4)N3—C11—C13115.4 (5)
C10—N3—Mn1114.9 (3)N3—C11—C12125.6 (5)
C17—N4—C13117.9 (5)C13—C11—C12118.9 (5)
C17—N4—Mn1125.7 (4)C11—C12—H12A109.5
C13—N4—Mn1116.3 (3)C11—C12—H12B109.5
C18—N5—Mn1169.2 (6)H12A—C12—H12B109.5
C19—N6—Mn1174.9 (5)C11—C12—H12C109.5
N1—C1—C2123.6 (6)H12A—C12—H12C109.5
N1—C1—H1118.2H12B—C12—H12C109.5
C2—C1—H1118.2N4—C13—C14120.4 (5)
C3—C2—C1118.0 (6)N4—C13—C11116.3 (5)
C3—C2—H2121.0C14—C13—C11123.3 (5)
C1—C2—H2121.0C15—C14—C13119.7 (6)
C2—C3—C4119.7 (6)C15—C14—H14120.2
C2—C3—H3120.1C13—C14—H14120.2
C4—C3—H3120.1C16—C15—C14119.6 (6)
C3—C4—C5119.2 (6)C16—C15—H15120.2
C3—C4—H4120.4C14—C15—H15120.2
C5—C4—H4120.4C15—C16—C17118.2 (6)
N1—C5—C4121.6 (5)C15—C16—H16120.9
N1—C5—C6115.6 (4)C17—C16—H16120.9
C4—C5—C6122.8 (5)N4—C17—C16124.2 (6)
N2—C6—C5115.6 (5)N4—C17—H17117.9
N2—C6—C7126.2 (5)C16—C17—H17117.9
C5—C6—C7118.2 (5)N5—C18—S1178.7 (6)
C6—C7—H7A109.5N6—C19—S2179.4 (6)
C6—C7—H7B109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5486).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deoghoria, S., Bera, S. K., Moulton, B., Zaworotko, M. J., Tuchagues, J.-P., Mostafa, G., Lu, T.-H. & Chandra, S. K. (2005). Polyhedron, 24, 343–350.
  • Gourbatsis, S., Perlepes, S. P., Hadjiliadis, N. & Kalkanis, G. (1990). Transition Met. Chem.15, 300–308.
  • Karmakar, T. K., Ghosh, B. K., Usman, A., Fun, H.-K., Riviere, E., Mallah, T., Aromi, G. & Chandra, S. K. (2005). Inorg. Chem.44, 2391–2399. [PubMed]
  • Louloudi, M., Nastopoulos, V., Gourbatsis, S., Perlepes, S. P. & Hadjiliadis, N. (1999). Inorg. Chem. Commun.2, 479–483.
  • Ouyang, X.-M., Fei, B.-L., Okamura, T., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2002). Chem. Lett. pp. 362–363.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sra, A. K., Sutter, J.-P., Guionneau, P., Chasseau, D., Yakhmi, J. V. & Kahn, O. (2000). Inorg. Chim. Acta, 300, 778–782.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography