PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1872–o1873.
Published online 2010 June 30. doi:  10.1107/S1600536810024852
PMCID: PMC3006981

Hydrogen bis­[2-(4-ammonio­phen­oxy)acetate] triiodide

Abstract

In the title compound, C16H19N2O6 +·I3 , the carboxyl­ate groups of a pair of (4-amino­phen­oxy) acetate ligands are bridged by an H atom in a rather classical configuration. The H atom is located on an inversion center and the pair of carboxyl­ate groups are centrosymmetrically related with an O(...)O distance of 2.494 (5) Å. The I3 anion is also located on an inversion center. In the crystal, N—H(...)O and N—H(...)I hydrogen-bond inter­actions build up a three-dimensionnal network.

Related literature

For dielectric–ferroelectric materials, see: Hang et al. (2009 [triangle]); Li et al. (2008 [triangle]). For related structures, see: Antolic et al. (1999 [triangle]); Bacon et al. (1977 [triangle]); Chen & Mak (1994 [triangle]); Godzisz et al. (2003 [triangle]); Kay (1977 [triangle]); Li et al. (1998 [triangle]); McAdam et al. (1971 [triangle]); Pogorzelec & Garbarczyk (2002 [triangle]); Sridhar et al. (2001 [triangle]); Videnova-Adrabinska et al. (2007 [triangle]); Zhu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1872-scheme1.jpg

Experimental

Crystal data

  • C16H19N2O6 +·I3
  • M r = 716.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1872-efi1.jpg
  • a = 5.065 (1) Å
  • b = 13.780 (3) Å
  • c = 14.982 (3) Å
  • β = 91.45 (3)°
  • V = 1045.4 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.52 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.52, T max = 0.58
  • 10680 measured reflections
  • 2408 independent reflections
  • 2182 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.062
  • S = 1.14
  • 2408 reflections
  • 124 parameters
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.75 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810024852/dn2575sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810024852/dn2575Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

We are interested in the dielectric-ferroelectric materials, including organic ligands (Li et al.,2008), metal-organic coordination compounds (Hang et al., 2009) and organic-inorganic hybrids. Recent studies have revealed that in amino acid-inorganic acid complexes, when the number of H atoms liberated from the inorganic acid is less than the number of amino acids, the H atom is shared by two amino acids, resulting in short symmetric O—H···O hydrogen bonds, as evidenced in triglycine sulfate (Kay et al., 1977), leading to phase transitions. Thus, we want to find aromatic compounds containing amidogens having dielectric-ferroelectric properties. As part of our ongoing studies, we report here the crystal structure of the title compound.

In the title compound, C16H19N2O6+.I3-, the carboxylate groups of a pair of (4-aminophenoxy) acetate are bridged by a proton (Fig. 1) as already observed in many carboxylate derivative (Antolic et al., 1999; Bacon et al.,1977; Chen & Mak, 1994; Godzisz et al., 2003; Kay, 1977; Li et al., 1998; McAdam et al.,1971; Pogorzelec & Garbarczyk, 2002; Sridhar et al., 2001; Videnova-Adrabinska et al., 2007; Zhu et al., 2002). The proton is located on an inversion center and the pair of carboxylate groups are centrosymmetrically related with an O···O distance of ca 2.494 (5) Å. The two carboxylate frameworks are in the same plane with the largest deviation from the plane being 0.013 (3) Å. This plane is making a dihedral angle of 84.1 (1)° with the phenyl ring.

The anion I3- is also located around inversion center. The occurence of N-H···O and N-H···I hydrogen interactions build up a three dimensionnal network (Fig. 2).

Experimental

ethyl 2-(4-aminophenoxy)acetate (1.95 g) and methanol(30 ml) were added to a round-bottomed flask with a magnetic stirrer bar, then hydrofluoric acid(52%) 2.4 g was added into the mixture. Yellow plate-like crystals of (I) were grown from an ethanol solution of the title compound by slow evaporation at room temperature.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C,N,O).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry codes : (i) -x+1, -y, -z+1; (ii) 1-x, ...
Fig. 2.
Packing view of the title compound, the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C16H19N2O6+·I3F(000) = 672
Mr = 716.03Dx = 2.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10680 reflections
a = 5.065 (1) Åθ = 3.1–27.5°
b = 13.780 (3) ŵ = 4.52 mm1
c = 14.982 (3) ÅT = 293 K
β = 91.45 (3)°Prism, yellow
V = 1045.4 (4) Å30.40 × 0.30 × 0.20 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer2408 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −6→6
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −17→17
Tmin = 0.52, Tmax = 0.58l = −19→19
10680 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0183P)2 + 1.2671P] where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max = 0.002
124 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2218 (4)0.67887 (15)0.58467 (15)0.0326 (5)
O20.8079 (4)0.56039 (18)0.62140 (14)0.0365 (5)
O30.6743 (4)0.55858 (17)0.47780 (15)0.0367 (5)
H30.50000.50000.50000.044*
N11.1886 (6)1.0177 (2)0.7898 (2)0.0412 (7)
H1A1.22381.06750.75420.049*
H1B1.31081.01440.83340.049*
H1C1.03041.02590.81320.049*
C30.8242 (6)0.5871 (2)0.5433 (2)0.0266 (6)
C41.1951 (6)0.7628 (2)0.63381 (19)0.0253 (6)
C91.1900 (6)0.9274 (2)0.73775 (19)0.0295 (6)
C111.3912 (6)0.7776 (2)0.6988 (2)0.0335 (7)
H11A1.52510.73210.70700.040*
C131.3875 (6)0.8600 (2)0.7513 (2)0.0332 (7)
H13A1.51720.86980.79550.040*
C140.9956 (6)0.9123 (3)0.6741 (2)0.0369 (7)
H14A0.86170.95790.66620.044*
C150.9965 (6)0.8299 (3)0.6217 (2)0.0361 (7)
H15A0.86400.81990.57850.043*
C161.0386 (6)0.6569 (2)0.5143 (2)0.0311 (7)
H16A1.13240.62840.46510.037*
H16B0.95700.71660.49310.037*
I10.53672 (6)0.162582 (19)0.624725 (17)0.05293 (10)
I20.50000.00000.50000.03753 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0381 (12)0.0215 (10)0.0377 (12)−0.0003 (9)−0.0087 (9)−0.0031 (9)
O20.0356 (12)0.0465 (14)0.0272 (11)−0.0053 (10)−0.0027 (9)0.0036 (10)
O30.0373 (12)0.0434 (13)0.0290 (11)−0.0057 (10)−0.0059 (9)−0.0062 (10)
N10.0396 (16)0.0464 (17)0.0376 (16)−0.0077 (13)0.0043 (12)−0.0193 (13)
C30.0285 (15)0.0233 (14)0.0280 (15)0.0060 (11)−0.0017 (11)−0.0031 (12)
C40.0283 (14)0.0212 (14)0.0264 (14)−0.0055 (11)0.0002 (11)0.0026 (11)
C90.0344 (16)0.0309 (16)0.0234 (14)−0.0087 (13)0.0041 (12)−0.0055 (12)
C110.0330 (16)0.0298 (16)0.0372 (17)−0.0007 (13)−0.0100 (13)0.0042 (14)
C130.0341 (16)0.0382 (17)0.0269 (15)−0.0050 (14)−0.0084 (12)0.0009 (13)
C140.0332 (17)0.0375 (18)0.0398 (18)0.0090 (14)−0.0057 (13)−0.0088 (15)
C150.0295 (16)0.0404 (19)0.0379 (18)0.0040 (13)−0.0117 (13)−0.0102 (15)
C160.0413 (18)0.0228 (15)0.0290 (15)−0.0011 (12)−0.0050 (13)−0.0014 (12)
I10.0714 (2)0.04395 (16)0.04379 (15)−0.00423 (12)0.00786 (12)−0.00539 (11)
I20.04291 (18)0.04059 (18)0.02891 (16)0.00398 (13)−0.00235 (12)0.00590 (12)

Geometric parameters (Å, °)

O1—C41.380 (4)C4—C111.388 (4)
O1—C161.419 (4)C9—C141.369 (4)
O2—C31.232 (4)C9—C131.376 (5)
O3—C31.287 (4)C11—C131.382 (5)
O3—O3i2.495 (5)C11—H11A0.9300
O3—H31.2476C13—H13A0.9300
N1—C91.467 (4)C14—C151.381 (5)
N1—H1A0.8899C14—H14A0.9300
N1—H1B0.8896C15—H15A0.9300
N1—H1C0.8899C16—H16A0.9700
C3—C161.522 (4)C16—H16B0.9700
C4—C151.375 (4)I1—I22.9203 (5)
C4—O1—C16120.3 (2)C13—C11—C4120.0 (3)
C3—O3—O3i113.7 (2)C13—C11—H11A120.0
C3—O3—H3113.7C4—C11—H11A120.0
C9—N1—H1A109.4C9—C13—C11119.4 (3)
C9—N1—H1B109.5C9—C13—H13A120.3
H1A—N1—H1B109.5C11—C13—H13A120.3
C9—N1—H1C109.5C9—C14—C15120.6 (3)
H1A—N1—H1C109.5C9—C14—H14A119.7
H1B—N1—H1C109.5C15—C14—H14A119.7
O2—C3—O3125.5 (3)C4—C15—C14119.3 (3)
O2—C3—C16121.7 (3)C4—C15—H15A120.3
O3—C3—C16112.8 (3)C14—C15—H15A120.3
C15—C4—O1125.1 (3)O1—C16—C3112.4 (2)
C15—C4—C11120.2 (3)O1—C16—H16A109.1
O1—C4—C11114.8 (3)C3—C16—H16A109.1
C14—C9—C13120.5 (3)O1—C16—H16B109.1
C14—C9—N1119.1 (3)C3—C16—H16B109.1
C13—C9—N1120.4 (3)H16A—C16—H16B107.9

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O3i1.251.252.495 (5)180
N1—H1A···I1ii0.892.853.665 (3)152
N1—H1B···O2iii0.892.132.907 (4)146
N1—H1C···O2iv0.892.052.935 (4)172

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y+1, z; (iii) −x+5/2, y+1/2, −z+3/2; (iv) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2575).

References

  • Antolic, S., Salopek, B., Kojic-Prodic, B., Magnus, V. & Cohen, J. D. (1999). Plant. Growth Regul.27, 21–31.
  • Bacon, G. E., Walker, C. R. & Speakman, J. C. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 979–983.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Chen, X.-M. & Mak, T. C. W. (1994). Acta Cryst. C50, 1807–1809.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Godzisz, D., Llczyszyn, M. & Ciunik, Z. (2003). Spectrochim. Acta Part A, 59, 235–244. [PubMed]
  • Hang, T., Fu, D. W., Ye, Q. & Xiong, R. G. (2009). Cryst. Growth Des.5, 2026–2029.
  • Kay, M. I. (1977). Ferroelectrics, 17, 415–418.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962.
  • Li, P., Wang, T., Emge, T. & Zhao, K. (1998). J. Am. Chem. Soc.120, 7391–7392.
  • McAdam, A., Currie, M. & Speakman, J. C. (1971). J. Chem. Soc. A, pp. 1994–1997.
  • Pogorzelec, K. & Garbarczyk, J. (2002). Mol. Phys. Rep.35, 132–141.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o1004–o1006.
  • Videnova-Adrabinska, V., Obara, E. & Lis, T. (2007). New J. Chem.31, 287–295.
  • Zhu, H.-F., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2002). Chem. Lett. pp. 898–899.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography