PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): m824–m825.
Published online 2010 June 23. doi:  10.1107/S1600536810022567
PMCID: PMC3006976

Bis(μ-4-phenyl­pyridine N-oxide-κ2 O:O)bis­[bis­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato)copper(II)]

Abstract

The asymmetric unit of the title compound, [Cu2(C5HF6O2)4(C11H9NO)2], contains one half of the centrosymmetric dinuclear complex. The coordination geometry of the CuII atom is octa­hedral, exhibiting a typical Jahn–Teller distortion. One trifluoro­methyl group is rotationally disordered between two orientations in a 1:1 ratio.

Related literature

For the use of copper complexes in optical devices, see: Akkılıç et al. (2010 [triangle]); Armaroli et al. (2007 [triangle]); Bessho et al. (2008 [triangle]); Chan et al. (2010 [triangle]); Daniel et al. (2009 [triangle]); Jeon et al. (2008 [triangle]); Kambayashi et al. (2005 [triangle]); Peranantham et al. (2007 [triangle]); Si et al. (2008 [triangle]); Vogler & Kunkely (2001 [triangle]); Walsh et al. (2009 [triangle]). For related complexes with 4-phenyl­pyridine-N-oxide, see: Papadaki et al. (1999 [triangle]); Watson & Johnson (1971 [triangle]). For general background to studies on copper complexes from our research group, see: Fernandes et al. (2010 [triangle]); Shi et al. (2006 [triangle]); Paz et al. (2005 [triangle]); Girginova et al. (2005 [triangle]); Brandão et al. (2005 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m824-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C5HF6O2)4(C11H9NO)2]
  • M r = 1297.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m824-efi1.jpg
  • a = 10.3830 (4) Å
  • b = 10.7870 (4) Å
  • c = 11.2498 (4) Å
  • α = 99.055 (2)°
  • β = 99.036 (2)°
  • γ = 98.258 (2)°
  • V = 1210.40 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.03 mm−1
  • T = 150 K
  • 0.18 × 0.10 × 0.09 mm

Data collection

  • Bruker X8 Kappa CCD APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.836, T max = 0.913
  • 47759 measured reflections
  • 6427 independent reflections
  • 5461 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.139
  • S = 1.04
  • 6427 reflections
  • 397 parameters
  • 24 restraints
  • H-atom parameters constrained
  • Δρmax = 1.21 e Å−3
  • Δρmin = −1.40 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT-Plus (Bruker, 2005 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810022567/cv2732sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810022567/cv2732Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for specific funding toward the purchase of the single-crystal X-ray diffractometer, and for the post-doctoral and PhD research grants Nos. SFRH/BPD/63736/2009 (to JAF) and SFRH/BD/46601/2008 (to PS), respectively. We further acknowledge the FCT for additional funding under the R&D project PTDC/QUI/69302/2006.

supplementary crystallographic information

Comment

The coordination chemistry of 4-phenylpyridine-N-oxide (PPNO; C11H9NO) is rather unknown. Surveying the Cambridge Structural Database (Allen, 2002) only two coordination compounds were found, namely a copper (Watson & Johnson, 1971) and a tin compound (Papadaki et al., 1999).

The title compound, [Cu(C5HF6O2)2(C11H9NO)2] (I) (where C5HF6O2- is hexafluoroacetylacetonate and C11H9NO corresponds to 4-phenylpyridine-N-oxide), has a bright green colour which is of interest for the potential use as a dye in several applications, such as in organic electronics. Coloured materials, including metal coordination compounds, have been explored in the last decades because pigmentation is a strong indicative of promising physical and optical properties (Vogler & Kunkely, 2001). Recent applications of copper coordination complexes include a Schottky diode based on a macrocyclic binuclear Cu2+ complex (Akkılıç et al., 2010) and a series of Graetzel solar cells using 6,6'-dimethyl-dicarboxylated-bipyridine complexes (Bessho et al., 2008). The use of Cu2+ complexes in OLEDs is still limited (Armaroli et al., 2007), and emission still relies mostly on Cu+ complexes, such as [Cu(I)bis(triphenylphosphine)dipyridophenazine] (Walsh et al., 2009) and three Cu(I)pyridylbenzimidazole complexes (Si et al., 2008). In addition, copper complexes are advantageous from the technological processing perspective, adaptable to various film deposition techniques: molecular beam epitaxy (Kambayashi et al., 2005), vacuum evaporation (Peranantham et al., 2007), electrodeposition (Chan et al., 2010) and chemical vapour deposition (CVD), either plasma-enhanced (Daniel et al., 2009) or the widespread metal organic CVD (Jeon et al., 2008).

Following our interest in the preparation and study of the properties of copper compounds (Fernandes et al., 2010; Shi et al., 2006; Paz et al., 2005; Girginova et al., 2005; Brandão et al., 2005) we have reacted [Cu(hfac)2] (where hfac- stands for hexafluoroacetylacetonate) with PPNO, affording the title compound as a vivid green crystalline material, whose crystal structure we report herein.

The structure is dimeric having a point of inversion in the geometrical centre of the quadrangle defined by Cu1···O5···Cu1(i)···O5(i) (Figure 1) [symmetry code: (i) 2 - x, -y, -z]. The asymmetric unit contains one PPNO ligand and one [Cu(hfac)2] moiety. The atoms Cu1, O2, O4 and O5, and their symmetry-related counterparts [symmetry code (i)], form a plane (longest distance to the average plane of about 0.041 Å). Likewise, atoms Cu1, O1 and O3, and their symmetry-related counterparts [symmetry code (i)], define a second plane (longest distance to this average plane of about 0.048 Å), which is perpendicular to the previous one. The Cu2+ centre exhibits a typical octahedral coordination environment with a strong Jahn-Teller distortion: the Cu—O bonds (equatorial plane) range from 1.9500 (19) to 1.9751 (18) Å, while the Cu—O bonds (at apical positions) are either 2.251 (2) or 2.4427 (18) Å. With the exception of the angles O5—Cu1—O5(i) [76.90 (7)°] and O2—Cu1—O4 [101.08 (8)°], the cis octahedral angles fall within a rather short range around the ideal value: 84.55 (7)–97.37 (8)° (Table 1). The trans octahedral angles are between 161.06 (8)° and 174.96 (8)°. The two average planes containing the aromatic rings of PPNO are mutually rotated by ca 37°. The structure exhibits crystallographic disorder associated with the fluorine atoms F4, F5 and F6 (rates of occupancy 50% for each location). Noteworthy, symmetry-related copper complexes are located at the vertex of the unit cell (Figure 2), with the inner space being essentially occupied by the coordinated organic ligands, leading to a hydrophobic empty space of about 36 Å3.

Experimental

Chemicals were purchased from commercial sources and were used as received without purification.

4-Phenylpyridine-N-oxide (PPNO, 71.7 mg, 0.419 mmol, Aldrich) was slowly added to a previously-prepared [Cu(hfac)2] (100.0 mg, 0.209 mmol; hfac- stands for hexafluoroacetylacetonate) solution in 10 ml of acetone. The resulting solution was magnetically stirred at 30 °C for 30 minutes. By slow evaporation to dryness, a green solid was obtained, which was dissolved in ethanol, gravity filtered and deposited above a water layer. Green crystals of the title compound formed after two days.

Refinement

Hydrogen atoms bound to carbon were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic displacement parameters for these atoms were fixed at 1.2 times Ueq of the respective carbon atom.

The substituent —CF3 groups were found to be severely affected by thermal disorder. Attempts to model this disorder were only successful for one moiety which was included in the final structure with two crystallographic positions (fixed rate of occupancy of 50% for each). In order to ensure a chemically reasonable geometry for this disorder moiety all C—F and F···F distances in the structure were restrained to common refineable values.

Figures

Fig. 1.
Schematic representation, in ball-and-stick and polyhedral fashions, of the molecular structure of the title compound. The crystallographic disorder associated with the —CF3 group was omitted for simplicity. Symmetry code: (i) 2 - x, -y, -z.
Fig. 2.
Perspective view along the c axis of the unit cell of the crystal packing of the title compound.

Crystal data

[Cu2(C5HF6O2)4(C11H9NO)2]Z = 1
Mr = 1297.70F(000) = 642
Triclinic, P1Dx = 1.780 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3830 (4) ÅCell parameters from 9842 reflections
b = 10.7870 (4) Åθ = 2.9–28.6°
c = 11.2498 (4) ŵ = 1.03 mm1
α = 99.055 (2)°T = 150 K
β = 99.036 (2)°Block, green
γ = 98.258 (2)°0.18 × 0.10 × 0.09 mm
V = 1210.40 (8) Å3

Data collection

Bruker X8 Kappa CCD APEXII diffractometer6427 independent reflections
Radiation source: fine-focus sealed tube5461 reflections with I > 2σ(I)
graphiteRint = 0.029
ω/phi scansθmax = 29.1°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −14→14
Tmin = 0.836, Tmax = 0.913k = −14→14
47759 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0712P)2 + 2.0571P] where P = (Fo2 + 2Fc2)/3
6427 reflections(Δ/σ)max = 0.003
397 parametersΔρmax = 1.21 e Å3
24 restraintsΔρmin = −1.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu11.01536 (3)0.13209 (3)−0.07044 (3)0.02205 (10)
O11.17596 (17)0.20733 (17)0.05247 (16)0.0235 (4)
O21.12021 (19)0.2109 (2)−0.21003 (18)0.0312 (4)
O30.86603 (19)0.05900 (18)−0.20302 (18)0.0284 (4)
O40.93026 (17)0.27435 (17)−0.01281 (18)0.0255 (4)
O50.91578 (18)0.02993 (17)0.08021 (16)0.0238 (4)
N10.8997 (2)0.0995 (2)0.18579 (19)0.0217 (4)
C11.4020 (2)0.2518 (2)0.14122 (18)0.0382 (7)
C21.2903 (2)0.2335 (2)0.0291 (2)0.0227 (5)
C31.3311 (3)0.2502 (3)−0.0794 (2)0.0273 (5)
H31.42330.2686−0.07950.033*
C41.2419 (3)0.2411 (3)−0.1900 (2)0.0261 (5)
C51.3046 (2)0.2749 (3)−0.2985 (2)0.0426 (7)
C60.6641 (2)0.03964 (18)−0.3416 (2)0.0404 (7)
C70.7645 (3)0.1076 (3)−0.2257 (2)0.0272 (5)
C80.7299 (3)0.2135 (3)−0.1602 (3)0.0329 (6)
H80.64590.2359−0.18520.039*
C90.8158 (2)0.2876 (2)−0.0585 (2)0.0247 (5)
C100.7717 (3)0.4038 (3)0.0107 (3)0.0303 (6)
C111.0036 (3)0.1754 (3)0.2619 (2)0.0272 (5)
H111.09030.17610.24460.033*
C120.9841 (3)0.2522 (3)0.3650 (2)0.0261 (5)
H121.05800.30480.41920.031*
C130.8573 (2)0.2537 (2)0.3912 (2)0.0214 (4)
C140.7527 (2)0.1713 (3)0.3101 (2)0.0256 (5)
H140.66510.16770.32580.031*
C150.7754 (2)0.0959 (2)0.2086 (2)0.0249 (5)
H150.70350.04080.15390.030*
C160.8344 (2)0.3403 (2)0.4986 (2)0.0228 (5)
C170.9250 (3)0.3653 (3)0.6087 (2)0.0299 (5)
H171.00180.32650.61480.036*
C180.9035 (3)0.4465 (3)0.7091 (3)0.0356 (6)
H180.96570.46310.78370.043*
C190.7924 (3)0.5035 (3)0.7018 (3)0.0365 (6)
H190.77830.55910.77110.044*
C200.7019 (3)0.4793 (3)0.5936 (3)0.0398 (7)
H200.62540.51850.58840.048*
C210.7225 (3)0.3976 (3)0.4916 (3)0.0325 (6)
H210.65980.38110.41730.039*
F11.36023 (19)0.2437 (2)0.24323 (16)0.0546 (6)
F21.4801 (3)0.3614 (3)0.1595 (2)0.1153 (16)
F31.4749 (3)0.1648 (3)0.1247 (2)0.150 (2)
F41.3541 (8)0.3951 (3)−0.2833 (5)0.122 (4)0.50
F51.4012 (5)0.2125 (7)−0.3118 (5)0.084 (3)0.50
F61.2224 (4)0.2467 (7)−0.4024 (3)0.0588 (17)0.50
F4'1.2595 (7)0.3725 (7)−0.3328 (9)0.109 (4)0.50
F5'1.4329 (2)0.3025 (8)−0.2815 (7)0.098 (4)0.50
F6'1.2680 (10)0.1810 (7)−0.3909 (6)0.199 (8)0.50
F70.7002 (2)−0.0620 (2)−0.3950 (2)0.0803 (9)
F80.6504 (3)0.1140 (2)−0.4212 (2)0.0945 (12)
F90.54684 (19)0.0040 (2)−0.3187 (2)0.0723 (8)
F100.85443 (17)0.51032 (16)0.01099 (18)0.0366 (4)
F110.7719 (2)0.3931 (2)0.12708 (19)0.0483 (5)
F120.65074 (17)0.41987 (19)−0.0375 (2)0.0465 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01770 (15)0.02152 (16)0.02440 (17)0.00386 (11)−0.00051 (11)0.00057 (11)
O10.0194 (8)0.0263 (9)0.0232 (8)0.0029 (7)0.0011 (6)0.0031 (7)
O20.0260 (9)0.0402 (11)0.0265 (9)0.0039 (8)−0.0006 (7)0.0109 (8)
O30.0249 (9)0.0284 (9)0.0276 (9)0.0032 (7)−0.0020 (7)0.0005 (7)
O40.0194 (8)0.0235 (8)0.0314 (9)0.0055 (7)−0.0009 (7)0.0023 (7)
O50.0282 (9)0.0230 (8)0.0208 (8)0.0081 (7)0.0062 (7)0.0007 (6)
N10.0212 (9)0.0218 (9)0.0222 (10)0.0047 (8)0.0049 (8)0.0026 (8)
C10.0215 (12)0.060 (2)0.0305 (14)0.0032 (13)−0.0010 (11)0.0098 (13)
C20.0196 (10)0.0218 (11)0.0250 (12)0.0052 (9)−0.0009 (9)0.0031 (9)
C30.0187 (11)0.0348 (14)0.0291 (13)0.0053 (10)0.0032 (9)0.0088 (10)
C40.0272 (12)0.0279 (12)0.0260 (12)0.0100 (10)0.0061 (10)0.0074 (10)
C50.0358 (16)0.065 (2)0.0313 (15)0.0122 (15)0.0082 (12)0.0154 (15)
C60.0387 (16)0.0369 (16)0.0368 (16)−0.0026 (13)−0.0103 (13)0.0061 (13)
C70.0217 (11)0.0285 (12)0.0276 (13)−0.0030 (10)−0.0033 (9)0.0077 (10)
C80.0198 (12)0.0331 (14)0.0421 (16)0.0046 (10)−0.0038 (11)0.0054 (12)
C90.0197 (11)0.0221 (11)0.0330 (13)0.0031 (9)0.0046 (9)0.0081 (10)
C100.0209 (12)0.0301 (13)0.0405 (15)0.0068 (10)0.0048 (10)0.0062 (11)
C110.0189 (11)0.0329 (13)0.0283 (13)0.0016 (10)0.0064 (9)0.0013 (10)
C120.0217 (11)0.0303 (13)0.0236 (12)−0.0002 (10)0.0041 (9)0.0008 (10)
C130.0215 (11)0.0227 (11)0.0208 (11)0.0045 (9)0.0043 (9)0.0049 (9)
C140.0180 (11)0.0312 (13)0.0268 (12)0.0053 (9)0.0039 (9)0.0022 (10)
C150.0185 (11)0.0270 (12)0.0267 (12)0.0034 (9)0.0011 (9)0.0008 (10)
C160.0240 (11)0.0237 (11)0.0202 (11)0.0025 (9)0.0047 (9)0.0036 (9)
C170.0266 (13)0.0378 (14)0.0242 (12)0.0063 (11)0.0033 (10)0.0033 (11)
C180.0371 (15)0.0429 (16)0.0214 (13)0.0002 (13)0.0017 (11)−0.0002 (11)
C190.0498 (18)0.0337 (15)0.0253 (13)0.0071 (13)0.0126 (12)−0.0019 (11)
C200.0433 (17)0.0414 (17)0.0357 (16)0.0191 (14)0.0085 (13)−0.0012 (13)
C210.0330 (14)0.0362 (14)0.0270 (13)0.0135 (12)0.0007 (11)0.0003 (11)
F10.0415 (11)0.0933 (18)0.0272 (9)0.0156 (11)−0.0025 (8)0.0110 (10)
F20.084 (2)0.159 (3)0.0636 (18)−0.081 (2)−0.0360 (15)0.046 (2)
F30.147 (3)0.261 (5)0.0483 (15)0.177 (4)−0.0346 (18)−0.029 (2)
F40.228 (11)0.058 (4)0.073 (5)−0.050 (5)0.081 (7)0.007 (3)
F50.048 (3)0.180 (9)0.061 (4)0.065 (4)0.038 (3)0.063 (5)
F60.035 (2)0.128 (6)0.0152 (19)0.018 (3)0.0034 (15)0.016 (3)
F4'0.070 (4)0.180 (10)0.137 (8)0.059 (5)0.055 (5)0.135 (8)
F5'0.029 (2)0.201 (10)0.090 (5)0.011 (4)0.018 (3)0.101 (7)
F6'0.313 (19)0.144 (9)0.111 (8)−0.082 (10)0.155 (11)−0.072 (7)
F70.0761 (18)0.0833 (19)0.0559 (15)0.0243 (15)−0.0267 (13)−0.0345 (14)
F80.128 (3)0.0745 (18)0.0489 (14)−0.0453 (18)−0.0450 (15)0.0346 (13)
F90.0367 (12)0.0837 (18)0.0747 (17)−0.0197 (12)−0.0092 (11)−0.0045 (14)
F100.0320 (9)0.0236 (8)0.0516 (11)0.0037 (7)0.0063 (8)0.0015 (7)
F110.0546 (12)0.0560 (12)0.0441 (11)0.0220 (10)0.0241 (10)0.0124 (9)
F120.0235 (8)0.0407 (10)0.0724 (14)0.0138 (7)0.0003 (9)0.0024 (9)

Geometric parameters (Å, °)

Cu1—O11.9711 (17)C7—C81.383 (4)
Cu1—O22.251 (2)C8—C91.390 (4)
Cu1—O31.9500 (19)C8—H80.9500
Cu1—O41.9524 (18)C9—C101.535 (4)
Cu1—O52.4427 (18)C10—F101.331 (3)
Cu1—O5i1.9751 (18)C10—F111.332 (4)
O1—C21.258 (3)C10—F121.334 (3)
O2—C41.234 (3)C11—C121.375 (4)
O3—C71.252 (3)C11—H110.9500
O4—C91.256 (3)C12—C131.395 (3)
O5—N11.349 (3)C12—H120.9500
O5—Cu1i1.9751 (18)C13—C141.399 (4)
N1—C111.343 (3)C13—C161.479 (3)
N1—C151.351 (3)C14—C151.367 (4)
N1—Cu1i2.945 (2)C14—H140.9500
C1—F31.297 (4)C15—H150.9500
C1—F11.300 (3)C16—C211.390 (4)
C1—F21.301 (4)C16—C171.396 (4)
C1—C21.540 (3)C17—C181.384 (4)
C2—C31.383 (4)C17—H170.9500
C3—C41.410 (4)C18—C191.381 (5)
C3—H30.9500C18—H180.9500
C4—C51.540 (3)C19—C201.380 (5)
C5—F6'1.2982 (15)C19—H190.9500
C5—F41.2985 (15)C20—C211.397 (4)
C5—F61.2987 (15)C20—H200.9500
C5—F5'1.2989 (15)C21—H210.9500
C5—F4'1.2998 (15)F4—F4'1.025 (7)
C5—F51.3003 (15)F4—F5'1.379 (6)
C6—F71.298 (3)F5—F5'0.968 (7)
C6—F81.298 (3)F5—F6'1.485 (7)
C6—F91.301 (3)F6—F6'0.921 (9)
C6—C71.542 (3)F6—F4'1.423 (7)
O1—Cu1—O287.50 (7)O3—C7—C6115.7 (2)
O1—Cu1—O591.03 (7)C8—C7—C6115.7 (2)
O1—Cu1—O5i86.68 (8)C8—C7—Cu194.49 (17)
O2—Cu1—O5174.17 (7)C6—C7—Cu1149.74 (18)
O3—Cu1—O1174.96 (8)C7—C8—C9121.1 (2)
O3—Cu1—O287.73 (8)C7—C8—Cu160.54 (14)
O3—Cu1—O492.62 (8)C9—C8—Cu160.60 (15)
O3—Cu1—O593.57 (7)C7—C8—H8119.4
O3—Cu1—O5i92.35 (8)C9—C8—H8119.4
O4—Cu1—O189.86 (8)Cu1—C8—H8178.7
O4—Cu1—O2101.08 (8)O4—C9—C8128.7 (3)
O4—Cu1—O584.55 (7)O4—C9—C10112.6 (2)
O4—Cu1—O5i161.06 (8)C8—C9—C10118.7 (2)
O5i—Cu1—O297.37 (8)C8—C9—Cu194.28 (17)
O5i—Cu1—O576.90 (7)C10—C9—Cu1146.95 (18)
C2—O1—Cu1125.00 (16)F10—C10—F11107.2 (2)
C4—O2—Cu1120.66 (17)F10—C10—F12107.2 (2)
C7—O3—Cu1124.47 (18)F11—C10—F12107.7 (2)
C9—O4—Cu1124.12 (18)F10—C10—C9110.8 (2)
N1—O5—Cu1i123.68 (14)F11—C10—C9110.5 (2)
N1—O5—Cu1120.78 (14)F12—C10—C9113.3 (2)
Cu1i—O5—Cu1103.10 (7)N1—C11—C12119.8 (2)
C11—N1—O5120.6 (2)N1—C11—H11120.1
C11—N1—C15121.3 (2)C12—C11—H11120.1
O5—N1—C15117.9 (2)C11—C12—C13120.9 (2)
C11—N1—Cu1i109.45 (16)C11—C12—H12119.5
C15—N1—Cu1i120.81 (16)C13—C12—H12119.5
F3—C1—F1106.88 (13)C12—C13—C14117.0 (2)
F3—C1—F2106.82 (13)C12—C13—C16121.4 (2)
F1—C1—F2106.45 (13)C14—C13—C16121.6 (2)
F3—C1—C2109.60 (18)C15—C14—C13120.6 (2)
F1—C1—C2113.95 (18)C15—C14—H14119.7
F2—C1—C2112.73 (19)C13—C14—H14119.7
O1—C2—C3130.7 (2)N1—C15—C14120.2 (2)
O1—C2—C1113.9 (2)N1—C15—H15119.9
C3—C2—C1115.4 (2)C14—C15—H15119.9
C3—C2—Cu197.93 (16)C21—C16—C17119.1 (2)
C1—C2—Cu1145.40 (16)C21—C16—C13120.6 (2)
C2—C3—C4122.9 (2)C17—C16—C13120.3 (2)
C2—C3—H3118.5C18—C17—C16120.3 (3)
C4—C3—H3118.5C18—C17—H17119.9
O2—C4—C3128.2 (2)C16—C17—H17119.9
O2—C4—C5116.2 (2)C19—C18—C17120.6 (3)
C3—C4—C5115.6 (2)C19—C18—H18119.7
C3—C4—Cu189.46 (16)C17—C18—H18119.7
C5—C4—Cu1154.41 (17)C20—C19—C18119.7 (3)
F6'—C5—F4135.8 (5)C20—C19—H19120.1
F4—C5—F6106.84 (14)C18—C19—H19120.1
F6'—C5—F5'106.86 (14)C19—C20—C21120.3 (3)
F4—C5—F5'64.2 (3)C19—C20—H20119.9
F6—C5—F5'127.3 (4)C21—C20—H20119.9
F6'—C5—F4'106.77 (15)C16—C21—C20120.1 (3)
F4—C5—F4'46.5 (3)C16—C21—H21119.9
F6—C5—F4'66.4 (4)C20—C21—H21119.9
F5'—C5—F4'106.66 (14)F4'—F4—C566.82 (18)
F6'—C5—F569.7 (4)F4'—F4—F5'119.4 (3)
F4—C5—F5106.75 (14)C5—F4—F5'57.93 (16)
F6—C5—F5106.59 (14)F5'—F5—C568.07 (17)
F4'—C5—F5139.5 (4)F5'—F5—F6'114.9 (4)
F6'—C5—C4109.4 (4)C5—F5—F6'55.1 (2)
F4—C5—C4112.7 (3)F6'—F6—C569.2 (2)
F6—C5—C4113.5 (3)F6'—F6—F4'124.3 (2)
F5'—C5—C4117.6 (3)C5—F6—F4'56.8 (2)
F4'—C5—C4109.0 (3)F4—F4'—C566.69 (17)
F5—C5—C4110.1 (3)F4—F4'—F6115.9 (4)
F7—C6—F8107.26 (13)C5—F4'—F656.8 (2)
F7—C6—F9106.60 (13)F5—F5'—C568.22 (18)
F8—C6—F9106.74 (13)F5—F5'—F4124.5 (2)
F7—C6—C7112.20 (19)C5—F5'—F457.91 (16)
F8—C6—C7111.06 (18)F6—F6'—C569.3 (2)
F9—C6—C7112.64 (19)F6—F6'—F5118.1 (4)
O3—C7—C8128.7 (2)C5—F6'—F555.2 (2)
O4—Cu1—O1—C2−124.4 (2)O4—Cu1—C8—C9−1.75 (16)
O5i—Cu1—O1—C274.2 (2)O1—Cu1—C8—C9−7.0 (2)
O2—Cu1—O1—C2−23.3 (2)O5i—Cu1—C8—C9151.74 (16)
O5—Cu1—O1—C2151.0 (2)O2—Cu1—C8—C9−100.53 (17)
O3—Cu1—O2—C4−158.9 (2)O5—Cu1—C8—C982.53 (17)
O4—Cu1—O2—C4108.8 (2)Cu1—O4—C9—C8−4.4 (4)
O1—Cu1—O2—C419.5 (2)Cu1—O4—C9—C10176.38 (17)
O5i—Cu1—O2—C4−66.9 (2)C7—C8—C9—O41.0 (5)
O4—Cu1—O3—C71.8 (2)Cu1—C8—C9—O42.5 (2)
O5i—Cu1—O3—C7163.5 (2)C7—C8—C9—C10−179.8 (3)
O2—Cu1—O3—C7−99.2 (2)Cu1—C8—C9—C10−178.3 (3)
O5—Cu1—O3—C786.5 (2)C7—C8—C9—Cu1−1.5 (3)
O3—Cu1—O4—C92.8 (2)O3—Cu1—C9—O4−177.1 (2)
O1—Cu1—O4—C9178.4 (2)O1—Cu1—C9—O4−1.7 (2)
O5i—Cu1—O4—C9−102.3 (3)O5i—Cu1—C9—O4131.5 (2)
O2—Cu1—O4—C991.0 (2)O2—Cu1—C9—O4−93.2 (2)
O5—Cu1—O4—C9−90.5 (2)O5—Cu1—C9—O487.5 (2)
O3—Cu1—O5—N1−125.16 (16)O3—Cu1—C9—C8−0.53 (17)
O4—Cu1—O5—N1−32.87 (16)O4—Cu1—C9—C8176.5 (3)
O1—Cu1—O5—N156.90 (16)O1—Cu1—C9—C8174.81 (16)
O5i—Cu1—O5—N1143.3 (2)O5i—Cu1—C9—C8−52.0 (3)
O3—Cu1—O5—Cu1i91.59 (9)O2—Cu1—C9—C883.36 (18)
O4—Cu1—O5—Cu1i−176.12 (9)O5—Cu1—C9—C8−95.98 (17)
O1—Cu1—O5—Cu1i−86.35 (8)O3—Cu1—C9—C10176.8 (3)
O5i—Cu1—O5—Cu1i0.0O4—Cu1—C9—C10−6.1 (3)
Cu1i—O5—N1—C1179.3 (3)O1—Cu1—C9—C10−7.9 (3)
Cu1—O5—N1—C11−56.3 (3)O5i—Cu1—C9—C10125.3 (3)
Cu1i—O5—N1—C15−104.5 (2)O2—Cu1—C9—C10−99.3 (3)
Cu1—O5—N1—C15119.9 (2)O5—Cu1—C9—C1081.4 (3)
Cu1—O5—N1—Cu1i−135.6 (2)O4—C9—C10—F1059.0 (3)
Cu1—O1—C2—C318.9 (4)C8—C9—C10—F10−120.3 (3)
Cu1—O1—C2—C1−162.19 (14)Cu1—C9—C10—F1062.7 (4)
F3—C1—C2—O1116.4 (2)O4—C9—C10—F11−59.7 (3)
F1—C1—C2—O1−3.3 (3)C8—C9—C10—F11121.0 (3)
F2—C1—C2—O1−124.8 (2)Cu1—C9—C10—F11−55.9 (4)
F3—C1—C2—C3−64.5 (3)O4—C9—C10—F12179.4 (2)
F1—C1—C2—C3175.8 (2)C8—C9—C10—F120.1 (4)
F2—C1—C2—C354.3 (3)Cu1—C9—C10—F12−176.8 (2)
F3—C1—C2—Cu198.8 (3)O5—N1—C11—C12175.6 (2)
F1—C1—C2—Cu1−20.9 (3)C15—N1—C11—C12−0.5 (4)
F2—C1—C2—Cu1−142.3 (3)Cu1i—N1—C11—C12−148.8 (2)
O3—Cu1—C2—O1179.0 (2)N1—C11—C12—C13−0.8 (4)
O4—Cu1—C2—O157.4 (2)C11—C12—C13—C141.9 (4)
O5i—Cu1—C2—O1−103.6 (2)C11—C12—C13—C16−177.1 (2)
O2—Cu1—C2—O1154.8 (2)C12—C13—C14—C15−1.7 (4)
O5—Cu1—C2—O1−30.8 (2)C16—C13—C14—C15177.3 (2)
O3—Cu1—C2—C313.4 (3)C11—N1—C15—C140.7 (4)
O4—Cu1—C2—C3−108.30 (17)O5—N1—C15—C14−175.5 (2)
O1—Cu1—C2—C3−165.7 (3)Cu1i—N1—C15—C14145.5 (2)
O5i—Cu1—C2—C390.73 (17)C13—C14—C15—N10.5 (4)
O2—Cu1—C2—C3−10.82 (16)C12—C13—C16—C21142.6 (3)
O5—Cu1—C2—C3163.51 (16)C14—C13—C16—C21−36.3 (4)
O3—Cu1—C2—C1−151.5 (2)C12—C13—C16—C17−37.6 (4)
O4—Cu1—C2—C186.9 (3)C14—C13—C16—C17143.5 (3)
O1—Cu1—C2—C129.5 (2)C21—C16—C17—C18−0.2 (4)
O5i—Cu1—C2—C1−74.1 (3)C13—C16—C17—C18179.9 (3)
O2—Cu1—C2—C1−175.7 (3)C16—C17—C18—C190.1 (5)
O5—Cu1—C2—C1−1.3 (3)C17—C18—C19—C200.0 (5)
O1—C2—C3—C41.0 (5)C18—C19—C20—C210.0 (5)
C1—C2—C3—C4−177.9 (2)C17—C16—C21—C200.3 (4)
Cu1—C2—C3—C411.5 (3)C13—C16—C21—C20−179.9 (3)
Cu1—O2—C4—C3−9.7 (4)C19—C20—C21—C16−0.2 (5)
Cu1—O2—C4—C5171.25 (17)F6'—C5—F4—F4'66.1 (6)
C2—C3—C4—O2−4.6 (5)F6—C5—F4—F4'30.2 (6)
C2—C3—C4—C5174.4 (2)F5'—C5—F4—F4'154.1 (6)
C2—C3—C4—Cu1−10.7 (3)F5—C5—F4—F4'144.0 (6)
O3—Cu1—C4—O222.0 (2)C4—C5—F4—F4'−95.1 (6)
O4—Cu1—C4—O2−76.0 (2)F6'—C5—F4—F5'−88.0 (4)
O1—Cu1—C4—O2−159.0 (2)F6—C5—F4—F5'−123.8 (5)
O5i—Cu1—C4—O2114.2 (2)F4'—C5—F4—F5'−154.1 (6)
O5—Cu1—C4—O2168.04 (19)F5—C5—F4—F5'−10.1 (5)
O3—Cu1—C4—C3−165.59 (16)C4—C5—F4—F5'110.8 (4)
O4—Cu1—C4—C396.36 (16)F6'—C5—F5—F5'146.6 (6)
O1—Cu1—C4—C313.38 (16)F4—C5—F5—F5'13.2 (6)
O5i—Cu1—C4—C3−73.38 (16)F6—C5—F5—F5'127.1 (6)
O2—Cu1—C4—C3172.4 (3)F4'—C5—F5—F5'54.2 (9)
O5—Cu1—C4—C3−19.6 (3)C4—C5—F5—F5'−109.4 (6)
O3—Cu1—C4—C53.6 (4)F4—C5—F5—F6'−133.4 (5)
O4—Cu1—C4—C5−94.5 (4)F6—C5—F5—F6'−19.4 (5)
O1—Cu1—C4—C5−177.4 (4)F5'—C5—F5—F6'−146.6 (6)
O5i—Cu1—C4—C595.8 (4)F4'—C5—F5—F6'−92.3 (5)
O2—Cu1—C4—C5−18.4 (3)C4—C5—F5—F6'104.0 (4)
O5—Cu1—C4—C5149.6 (3)F4—C5—F6—F6'141.9 (6)
O2—C4—C5—F6'−55.4 (6)F5'—C5—F6—F6'71.9 (6)
C3—C4—C5—F6'125.4 (6)F4'—C5—F6—F6'165.4 (7)
Cu1—C4—C5—F6'−42.6 (7)F5—C5—F6—F6'28.1 (6)
O2—C4—C5—F4110.8 (5)C4—C5—F6—F6'−93.2 (7)
C3—C4—C5—F4−68.4 (5)F6'—C5—F6—F4'−165.4 (7)
Cu1—C4—C5—F4123.6 (5)F4—C5—F6—F4'−23.5 (4)
O2—C4—C5—F6−10.8 (4)F5'—C5—F6—F4'−93.5 (4)
C3—C4—C5—F6170.0 (4)F5—C5—F6—F4'−137.3 (4)
Cu1—C4—C5—F62.0 (6)C4—C5—F6—F4'101.3 (3)
O2—C4—C5—F5'−177.5 (5)F5'—F4—F4'—C525.2 (5)
C3—C4—C5—F5'3.3 (5)C5—F4—F4'—F6−29.3 (4)
Cu1—C4—C5—F5'−164.7 (5)F5'—F4—F4'—F6−4.1 (8)
O2—C4—C5—F4'61.0 (5)F6'—C5—F4'—F4−138.2 (6)
C3—C4—C5—F4'−118.2 (5)F6—C5—F4'—F4−148.3 (6)
Cu1—C4—C5—F4'73.8 (6)F5'—C5—F4'—F4−24.3 (6)
O2—C4—C5—F5−130.2 (4)F5—C5—F4'—F4−60.1 (8)
C3—C4—C5—F550.6 (4)C4—C5—F4'—F4103.7 (5)
Cu1—C4—C5—F5−117.3 (5)F6'—C5—F4'—F610.0 (5)
Cu1—O3—C7—C8−5.6 (4)F4—C5—F4'—F6148.3 (6)
Cu1—O3—C7—C6174.94 (14)F5'—C5—F4'—F6124.0 (5)
F7—C6—C7—O32.6 (3)F5—C5—F4'—F688.2 (5)
F8—C6—C7—O3−117.5 (2)C4—C5—F4'—F6−108.1 (3)
F9—C6—C7—O3122.9 (2)F6'—F6—F4'—F415.9 (10)
F7—C6—C7—C8−177.0 (2)C5—F6—F4'—F432.5 (5)
F8—C6—C7—C863.0 (3)F6'—F6—F4'—C5−16.5 (7)
F9—C6—C7—C8−56.7 (3)F6'—F5—F5'—C529.9 (4)
F7—C6—C7—Cu18.2 (4)C5—F5—F5'—F4−14.5 (6)
F8—C6—C7—Cu1−111.8 (3)F6'—F5—F5'—F415.4 (9)
F9—C6—C7—Cu1128.5 (3)F6'—C5—F5'—F5−32.7 (7)
O4—Cu1—C7—O3−178.1 (2)F4—C5—F5'—F5−165.9 (7)
O1—Cu1—C7—O3166.4 (2)F6—C5—F5'—F5−73.9 (5)
O5i—Cu1—C7—O3−17.9 (2)F4'—C5—F5'—F5−146.6 (6)
O2—Cu1—C7—O380.6 (2)C4—C5—F5'—F590.8 (6)
O5—Cu1—C7—O3−94.6 (2)F6'—C5—F5'—F4133.3 (5)
O3—Cu1—C7—C8175.6 (3)F6—C5—F5'—F492.1 (3)
O4—Cu1—C7—C8−2.47 (17)F4'—C5—F5'—F419.3 (5)
O1—Cu1—C7—C8−17.9 (3)F5—C5—F5'—F4165.9 (7)
O5i—Cu1—C7—C8157.75 (17)C4—C5—F5'—F4−103.3 (3)
O2—Cu1—C7—C8−103.75 (18)F4'—F4—F5'—F5−11.6 (11)
O5—Cu1—C7—C881.09 (18)C5—F4—F5'—F515.9 (7)
O3—Cu1—C7—C6−9.1 (3)F4'—F4—F5'—C5−27.5 (6)
O4—Cu1—C7—C6172.8 (3)F4'—F6—F6'—C514.8 (7)
O1—Cu1—C7—C6157.4 (3)C5—F6—F6'—F5−26.6 (5)
O5i—Cu1—C7—C6−27.0 (3)F4'—F6—F6'—F5−11.8 (10)
O2—Cu1—C7—C671.5 (3)F4—C5—F6'—F6−57.8 (7)
O5—Cu1—C7—C6−103.6 (3)F5'—C5—F6'—F6−127.8 (6)
O3—C7—C8—C94.6 (5)F4'—C5—F6'—F6−13.9 (6)
C6—C7—C8—C9−175.9 (2)F5—C5—F6'—F6−151.2 (6)
Cu1—C7—C8—C91.5 (3)C4—C5—F6'—F6103.9 (6)
O3—C7—C8—Cu13.1 (2)F4—C5—F6'—F593.5 (5)
C6—C7—C8—Cu1−177.4 (2)F6—C5—F6'—F5151.2 (6)
O3—Cu1—C8—C7−2.18 (16)F5'—C5—F6'—F523.4 (4)
O4—Cu1—C8—C7176.8 (2)F4'—C5—F6'—F5137.3 (4)
O1—Cu1—C8—C7171.52 (16)C4—C5—F6'—F5−104.9 (3)
O5i—Cu1—C8—C7−29.7 (2)F5'—F5—F6'—F6−3.6 (8)
O2—Cu1—C8—C777.99 (18)C5—F5—F6'—F630.7 (6)
O5—Cu1—C8—C7−98.95 (18)F5'—F5—F6'—C5−34.3 (5)
O3—Cu1—C8—C9179.3 (2)

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2732).

References

  • Akkılıç, K., Ocak, Y. S., Kılıçoğlu, T., İlhan, S. & Temel, H. (2010). Curr. Appl. Phys.10, 337–341.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Armaroli, N., Accorsi, G., Cardinali, F. & Listorti, A. (2007). Top. Curr. Chem.280, 69–115.
  • Bessho, T., Constable, E. C., Graetzel, M., Redondo, A. H., Housecroft, C. E., Kylberg, W., Nazeeruddin, M. K., Neuburger, M. & Schaffner, S. (2008). Chem. Commun. pp. 3717–3719. [PubMed]
  • Brandão, P., Paz, F. A. A. & Rocha, J. (2005). Chem. Commun. pp. 171–173. [PubMed]
  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2005). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS, Delft, The Netherlands.
  • Chan, C. P., Lam, H. & Surya, C. (2010). Sol. Energ. Mater.94, 207–211.
  • Daniel, A., Le Pen, C., Archambeau, C. & Reniers, F. (2009). Appl. Surf. Sci.256, S82–S85.
  • Fernandes, J. A., Ramos, A. I., Silva, P., Braga, S. S., Ribeiro-Claro, P., Rocha, J. & Almeida Paz, F. A. (2010). Acta Cryst. E66, m626–m627. [PMC free article] [PubMed]
  • Girginova, P. I., Paz, F. A. A., Nogueira, H. I. S., Silva, N. J. O., Amaral, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct.737, 221–229.
  • Jeon, B. P., Lee, S. & Lee, J. K. (2008). Surf. Coat. Technol.202, 1839–1846.
  • Kambayashi, T., Ohta, H., Hoshi, H., Hirano, M., Hosono, H., Takezoe, H. & Ishikawa, K. (2005). Cryst. Growth Des.5, 143–146.
  • Papadaki, H., Christofides, A., Jeffery, J. C. & Bakas, T. (1999). J. Coord. Chem.47, 559–572.
  • Almeida Paz, F. A., Shi, F.-N., Trindade, T., Klinowski, J. & Rocha, J. (2005). Acta Cryst. E61, m2247–m2250.
  • Peranantham, P., Jeyachandran, Y. L., Viswanathan, C., Praveena, N. N., Chitra, P. C., Mangalaraj, D. & Narayandass, S. K. (2007). Mater. Charact.58, 756–764.
  • Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, F.-N., Almeida Paz, F. A., Trindade, T. & Rocha, J. (2006). Acta Cryst. E62, m335–m338.
  • Si, Z., Li, J., Li, B., Lui, S. & Li, W. (2008). J. Lumin.129, 181–186.
  • Vogler, A. & Kunkely, H. (2001). Topics in Current Chemistry, 1st ed. Berlin: Springer-Verlag.
  • Walsh, P. J., Lundin, N. J., Gordon, K. C., Kim, J.-Y. & Lee, C.-H. (2009). Opt. Mat.31, 1525–1531.
  • Watson, W. H. & Johnson, D. R. (1971). J. Coord. Chem.1, 145–153.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography