PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1622.
Published online 2010 June 9. doi:  10.1107/S1600536810020787
PMCID: PMC3006965

5-Phenyl-3,4,4a,5,6,12c-hexa­hydro-2H-benzo[f]pyrano[3,2-c]quinoline

Abstract

In the title compound, C22H21N, the pyridine ring adopts a distorted boat conformation, while the adjacent pyran ring adopts a chair conformation; the heterocyclic rings make a dihedral angle of 40.1 (2)° with each other.

Related literature

For the biological properties of pyran­oquinoline derivatives, see: Faber et al. (1984 [triangle]); Johnson et al. (1989 [triangle]); Schiemann et al. (2007 [triangle]); Yamada et al. (1992 [triangle]). Zhao & Teng (2008 [triangle]). For related structures, see: Ramesh et al. (2008 [triangle]); Zhao & Teng (2008 [triangle]); Bai et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1622-scheme1.jpg

Experimental

Crystal data

  • C22H21NO
  • M r = 315.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1622-efi1.jpg
  • a = 8.1106 (2) Å
  • b = 10.9560 (2) Å
  • c = 18.5020 (3) Å
  • β = 93.552 (1)°
  • V = 1640.92 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.50 × 0.33 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • 11135 measured reflections
  • 2956 independent reflections
  • 2303 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.140
  • S = 1.03
  • 2956 reflections
  • 221 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810020787/pv2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810020787/pv2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of the Jiangsu Education Committee for financial support.

supplementary crystallographic information

Comment

The synthesis of pyranoquinoline derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include psychotropic activity (Yamada et al., 1992), anti-allergenic activity (Faber et al., 1984), and anti-inflammatory (Johnson et al., 1989). They are also used for the treatment of proliferative diseases, such as cancer (Schiemann et al., 2007). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the crystal structure of (I), the pyridine ring of the pyranoquinoline moiety is slightly distorted and adopts a distorted boat conformation (Fig. 1). The atoms C1 and C2 deviate from the basal plane defined by the atoms C3—C5/N1 by 0.253 (3) and -0.495 (3) Å, respectively. This conformation is similar to that found in other hydropyridine derivatives (Ramesh et al. 2008; Zhao & Teng, 2008; Bai et al., 2009). In the adjacent pyran ring, the atoms C2, C3, C14 and C15 are coplanar, while the atoms O1 and C16 deviate from the plane by 0.659 (3) and -0.623 (3) Å, respectively. These data indicate that the pyran ring adopts a chair confirmation. The basal plane of the pyridine ring nearly parallel to the naphthalene ring C4—C13, forming a dihedral angle of 2.7 (1)°, and makes a dihedral angle of 82.2 (1)° to benzene ring. Two heterocyclic rings make a dihedral angle of 40.1 (1)°.

Experimental

The title compound, (I), was prepared by the reaction of benzaldehyde (0.212 g, 2 mmol), naphthalen-2-amine (0.286 g, 2.0 mmol), 3,4-dihydro-2H-pyran (0.252 g, 3.0 mmol), I2 (0.026 g, 0.1 mmol) and THF (10 ml) for 14 h (yield 86%, mp. 477–478 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide (dmf) solution.

Refinement

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, except for H1 which was located from a difference map and its distance was restricted at 0.85 by DFIX command, with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure drawing for (I) showing 30% probability of displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The molecular packing diagram of (I).

Crystal data

C22H21NOF(000) = 672
Mr = 315.40Dx = 1.277 Mg m3
Monoclinic, P21/cMelting point = 477–478 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1106 (2) ÅCell parameters from 3365 reflections
b = 10.9560 (2) Åθ = 2.5–26.4°
c = 18.5020 (3) ŵ = 0.08 mm1
β = 93.552 (1)°T = 296 K
V = 1640.92 (6) Å3Block, colourless
Z = 40.50 × 0.33 × 0.10 mm

Data collection

Bruker APEXII area-detector diffractometer2303 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
graphiteθmax = 25.2°, θmin = 2.2°
[var phi] & ω scansh = −9→9
11135 measured reflectionsk = −13→12
2956 independent reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0712P)2 + 0.4581P] where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C40.3714 (2)1.07478 (15)0.36093 (9)0.0408 (4)
N10.61481 (19)0.95714 (14)0.39789 (10)0.0537 (4)
O10.18206 (15)0.97459 (12)0.43549 (7)0.0562 (4)
C130.3017 (2)1.18875 (15)0.33707 (9)0.0414 (4)
C50.5404 (2)1.06466 (16)0.37471 (10)0.0439 (4)
C30.2648 (2)0.96399 (16)0.36947 (10)0.0442 (4)
H3A0.18080.96250.32910.053*
C80.4069 (2)1.29013 (16)0.32593 (9)0.0452 (4)
C60.6433 (2)1.16641 (18)0.36261 (11)0.0544 (5)
H6A0.75711.15890.37110.065*
C10.5156 (2)0.85413 (16)0.42038 (10)0.0470 (4)
H1A0.47980.87050.46910.056*
C20.3629 (2)0.84524 (16)0.36796 (10)0.0467 (4)
H2A0.40120.83590.31910.056*
C70.5791 (2)1.27409 (18)0.33898 (11)0.0529 (5)
H7A0.64971.33900.33110.064*
C170.6191 (2)0.73967 (16)0.42288 (9)0.0439 (4)
C100.1721 (3)1.41656 (19)0.29126 (12)0.0623 (6)
H10A0.12811.49140.27610.075*
C220.6980 (2)0.69912 (17)0.36296 (10)0.0522 (5)
H22A0.68870.74430.32030.063*
C90.3376 (3)1.40304 (17)0.30283 (10)0.0552 (5)
H9A0.40681.46900.29550.066*
C110.0673 (3)1.31761 (19)0.30220 (12)0.0614 (5)
H11A−0.04621.32700.29400.074*
C120.1299 (2)1.20753 (17)0.32474 (10)0.0515 (5)
H12A0.05791.14330.33220.062*
C160.2505 (3)0.73714 (18)0.38181 (12)0.0603 (5)
H16A0.17300.72600.34030.072*
H16B0.31680.66370.38740.072*
C180.6379 (3)0.6707 (2)0.48508 (11)0.0630 (6)
H18A0.58690.69540.52630.076*
C210.7894 (3)0.59365 (18)0.36538 (11)0.0581 (5)
H21A0.83990.56760.32430.070*
C200.8067 (3)0.52664 (18)0.42770 (12)0.0604 (5)
H20A0.86930.45550.42930.073*
C150.1569 (3)0.7550 (2)0.44793 (14)0.0697 (6)
H15A0.23250.75290.49070.084*
H15B0.07730.68960.45170.084*
C140.0693 (3)0.8750 (2)0.44381 (14)0.0692 (6)
H14A−0.01200.87420.40310.083*
H14B0.01150.88710.48760.083*
C190.7316 (3)0.5649 (2)0.48709 (12)0.0710 (6)
H19A0.74310.51970.52960.085*
H10.70870.9650.42040.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C40.0409 (9)0.0403 (9)0.0416 (9)−0.0009 (7)0.0053 (7)−0.0061 (7)
N10.0389 (8)0.0454 (9)0.0761 (11)0.0008 (7)−0.0021 (8)−0.0027 (8)
O10.0504 (7)0.0515 (8)0.0685 (9)−0.0046 (6)0.0189 (6)−0.0062 (6)
C130.0459 (9)0.0410 (9)0.0376 (9)0.0006 (7)0.0059 (7)−0.0056 (7)
C50.0405 (9)0.0423 (9)0.0492 (10)0.0001 (7)0.0049 (7)−0.0071 (8)
C30.0398 (9)0.0440 (10)0.0488 (10)−0.0012 (7)0.0026 (7)−0.0022 (8)
C80.0532 (10)0.0440 (10)0.0390 (9)−0.0010 (8)0.0074 (8)−0.0064 (7)
C60.0398 (9)0.0557 (12)0.0678 (13)−0.0048 (9)0.0050 (9)−0.0073 (9)
C10.0455 (9)0.0462 (10)0.0496 (10)0.0020 (8)0.0038 (8)−0.0062 (8)
C20.0476 (10)0.0435 (10)0.0489 (10)0.0003 (8)0.0019 (8)−0.0057 (8)
C70.0537 (11)0.0472 (11)0.0589 (12)−0.0109 (9)0.0112 (9)−0.0048 (9)
C170.0430 (9)0.0433 (10)0.0454 (10)0.0001 (7)0.0020 (7)−0.0028 (8)
C100.0745 (14)0.0462 (11)0.0665 (13)0.0146 (10)0.0071 (11)0.0003 (9)
C220.0618 (11)0.0503 (11)0.0454 (11)0.0115 (9)0.0096 (9)0.0059 (8)
C90.0721 (13)0.0404 (10)0.0540 (11)−0.0021 (9)0.0107 (10)−0.0030 (8)
C110.0552 (11)0.0587 (13)0.0703 (14)0.0132 (10)0.0037 (10)−0.0008 (10)
C120.0486 (10)0.0484 (11)0.0578 (12)0.0031 (8)0.0059 (8)−0.0018 (9)
C160.0605 (12)0.0451 (11)0.0738 (14)−0.0038 (9)−0.0096 (10)0.0002 (10)
C180.0726 (13)0.0731 (14)0.0438 (11)0.0105 (11)0.0073 (9)0.0028 (10)
C210.0641 (12)0.0514 (11)0.0597 (12)0.0096 (10)0.0108 (10)−0.0051 (9)
C200.0629 (12)0.0432 (11)0.0742 (14)0.0053 (9)−0.0028 (10)0.0043 (10)
C150.0634 (13)0.0569 (13)0.0885 (17)−0.0110 (10)0.0021 (12)0.0077 (12)
C140.0556 (12)0.0630 (13)0.0909 (17)−0.0118 (10)0.0195 (11)0.0038 (12)
C190.0862 (16)0.0659 (14)0.0603 (14)0.0146 (12)−0.0002 (12)0.0210 (11)

Geometric parameters (Å, °)

C4—C51.383 (2)C10—C91.355 (3)
C4—C131.429 (2)C10—C111.400 (3)
C4—C31.504 (2)C10—H10A0.9300
N1—C51.380 (2)C22—C211.372 (3)
N1—C11.461 (2)C22—H22A0.9300
N1—H10.850C9—H9A0.9300
O1—C31.434 (2)C11—C121.364 (3)
O1—C141.438 (2)C11—H11A0.9300
C13—C121.413 (2)C12—H12A0.9300
C13—C81.423 (2)C16—C151.492 (3)
C5—C61.418 (3)C16—H16A0.9700
C3—C21.526 (2)C16—H16B0.9700
C3—H3A0.9800C18—C191.385 (3)
C8—C91.414 (3)C18—H18A0.9300
C8—C71.414 (3)C21—C201.367 (3)
C6—C71.351 (3)C21—H21A0.9300
C6—H6A0.9300C20—C191.355 (3)
C1—C171.508 (2)C20—H20A0.9300
C1—C21.529 (3)C15—C141.494 (3)
C1—H1A0.9800C15—H15A0.9700
C2—C161.526 (3)C15—H15B0.9700
C2—H2A0.9800C14—H14A0.9700
C7—H7A0.9300C14—H14B0.9700
C17—C181.378 (3)C19—H19A0.9300
C17—C221.387 (2)
C5—C4—C13119.71 (15)C9—C10—H10A120.1
C5—C4—C3119.05 (15)C11—C10—H10A120.1
C13—C4—C3121.22 (15)C21—C22—C17121.24 (18)
C5—N1—C1120.68 (14)C21—C22—H22A119.4
C5—N1—H1115.1C17—C22—H22A119.4
C1—N1—H1115.7C10—C9—C8120.97 (19)
C3—O1—C14111.34 (15)C10—C9—H9A119.5
C12—C13—C8117.18 (16)C8—C9—H9A119.5
C12—C13—C4122.99 (16)C12—C11—C10120.76 (19)
C8—C13—C4119.82 (15)C12—C11—H11A119.6
N1—C5—C4122.34 (16)C10—C11—H11A119.6
N1—C5—C6118.03 (15)C11—C12—C13121.52 (19)
C4—C5—C6119.60 (16)C11—C12—H12A119.2
O1—C3—C4109.05 (13)C13—C12—H12A119.2
O1—C3—C2110.88 (14)C15—C16—C2112.03 (17)
C4—C3—C2112.49 (14)C15—C16—H16A109.2
O1—C3—H3A108.1C2—C16—H16A109.2
C4—C3—H3A108.1C15—C16—H16B109.2
C2—C3—H3A108.1C2—C16—H16B109.2
C9—C8—C7122.01 (17)H16A—C16—H16B107.9
C9—C8—C13119.76 (17)C17—C18—C19120.90 (19)
C7—C8—C13118.23 (16)C17—C18—H18A119.6
C7—C6—C5121.22 (17)C19—C18—H18A119.6
C7—C6—H6A119.4C20—C21—C22120.45 (19)
C5—C6—H6A119.4C20—C21—H21A119.8
N1—C1—C17109.61 (14)C22—C21—H21A119.8
N1—C1—C2107.90 (15)C19—C20—C21119.34 (19)
C17—C1—C2113.22 (14)C19—C20—H20A120.3
N1—C1—H1A108.7C21—C20—H20A120.3
C17—C1—H1A108.7C16—C15—C14109.77 (19)
C2—C1—H1A108.7C16—C15—H15A109.7
C16—C2—C3109.97 (15)C14—C15—H15A109.7
C16—C2—C1114.33 (16)C16—C15—H15B109.7
C3—C2—C1109.69 (14)C14—C15—H15B109.7
C16—C2—H2A107.5H15A—C15—H15B108.2
C3—C2—H2A107.5O1—C14—C15111.70 (17)
C1—C2—H2A107.5O1—C14—H14A109.3
C6—C7—C8121.39 (17)C15—C14—H14A109.3
C6—C7—H7A119.3O1—C14—H14B109.3
C8—C7—H7A119.3C15—C14—H14B109.3
C18—C17—C22117.36 (17)H14A—C14—H14B107.9
C18—C17—C1120.95 (17)C20—C19—C18120.71 (19)
C22—C17—C1121.68 (16)C20—C19—H19A119.6
C9—C10—C11119.80 (19)C18—C19—H19A119.6
C5—C4—C13—C12−177.36 (16)N1—C1—C2—C3−59.10 (19)
C3—C4—C13—C124.4 (3)C17—C1—C2—C3179.41 (14)
C5—C4—C13—C81.5 (2)C5—C6—C7—C80.5 (3)
C3—C4—C13—C8−176.73 (15)C9—C8—C7—C6178.50 (18)
C1—N1—C5—C4−10.1 (3)C13—C8—C7—C6−1.1 (3)
C1—N1—C5—C6171.94 (17)N1—C1—C17—C18124.28 (19)
C13—C4—C5—N1179.96 (16)C2—C1—C17—C18−115.2 (2)
C3—C4—C5—N1−1.7 (3)N1—C1—C17—C22−56.2 (2)
C13—C4—C5—C6−2.2 (3)C2—C1—C17—C2264.3 (2)
C3—C4—C5—C6176.16 (16)C18—C17—C22—C210.8 (3)
C14—O1—C3—C4175.92 (15)C1—C17—C22—C21−178.78 (17)
C14—O1—C3—C2−59.69 (19)C11—C10—C9—C80.0 (3)
C5—C4—C3—O1104.13 (17)C7—C8—C9—C10−179.42 (18)
C13—C4—C3—O1−77.58 (19)C13—C8—C9—C100.2 (3)
C5—C4—C3—C2−19.3 (2)C9—C10—C11—C120.3 (3)
C13—C4—C3—C2158.98 (15)C10—C11—C12—C13−0.7 (3)
C12—C13—C8—C9−0.6 (2)C8—C13—C12—C110.8 (3)
C4—C13—C8—C9−179.55 (15)C4—C13—C12—C11179.77 (17)
C12—C13—C8—C7179.06 (16)C3—C2—C16—C15−51.1 (2)
C4—C13—C8—C70.1 (2)C1—C2—C16—C1572.8 (2)
N1—C5—C6—C7179.13 (18)C22—C17—C18—C19−0.2 (3)
C4—C5—C6—C71.2 (3)C1—C17—C18—C19179.35 (19)
C5—N1—C1—C17164.33 (16)C17—C22—C21—C20−0.9 (3)
C5—N1—C1—C240.6 (2)C22—C21—C20—C190.5 (3)
O1—C3—C2—C1653.87 (19)C2—C16—C15—C1452.5 (2)
C4—C3—C2—C16176.28 (15)C3—O1—C14—C1561.8 (2)
O1—C3—C2—C1−72.68 (18)C16—C15—C14—O1−57.3 (3)
C4—C3—C2—C149.7 (2)C21—C20—C19—C180.1 (3)
N1—C1—C2—C16176.86 (15)C17—C18—C19—C20−0.2 (4)
C17—C1—C2—C1655.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2287).

References

  • Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799. [PMC free article] [PubMed]
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Faber, K., Stueckler, H. & Kappe, T. (1984). J. Heterocycl. Chem.21, 1177–1178.
  • Johnson, J. V., Rauckman, S., Baccanari, P. D. & Roth, B. (1989). J. Med. Chem.32, 1942–1949. [PubMed]
  • Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1891. [PMC free article] [PubMed]
  • Schiemann, K., Emde, U., Schlueter, T., Saal, C. & Maiwald, M. (2007). PCT Int. Appl. WO, 2007147480, A2.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yamada, N., Kadowaki, S., Takahashi, K. & Umezu, K. (1992). Biochem. Pharmacol.44, 1211–1213. [PubMed]
  • Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography