PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 July 1; 66(Pt 7): o1643.
Published online 2010 June 16. doi:  10.1107/S1600536810021446
PMCID: PMC3006958

N-(3-Chloro­phen­yl)maleamic acid

Abstract

In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intra­molecular hydrogen bonds. The first is a short O—H(...)O hydrogen bond within the maleamic acid unit and the second is a C—H(...)O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1)° with the phenyl ring. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into C(7) chains running [010].

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2010a [triangle],b [triangle]); Prasad et al. (2002 [triangle]); Shakuntala et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1643-scheme1.jpg

Experimental

Crystal data

  • C10H8ClNO3
  • M r = 225.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1643-efi3.jpg
  • a = 10.7779 (3) Å
  • b = 13.2103 (4) Å
  • c = 7.1372 (2) Å
  • β = 104.976 (3)°
  • V = 981.69 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 295 K
  • 0.55 × 0.09 × 0.06 mm

Data collection

  • Oxford Diffraction Gemini R, CCD diffractometer
  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.852, T max = 0.982
  • 15632 measured reflections
  • 1829 independent reflections
  • 1533 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.081
  • S = 1.08
  • 1829 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810021446/bx2280sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810021446/bx2280Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2010a,b; Prasad et al., 2002; Shakuntala et al., 2009), the crystal structure of N-(3-chlorophenyl)maleamic acid (I) has been determined (Fig. 1).The conformations of the N—H and the C=O bonds in the amide segment are anti to each other. The conformation of the N—H bond is also anti to the meta-Cl group in the phenyl ring.In the maleamic acid moiety, the amide C=O bond is anti to the adjacent C—H bond, while the carboxyl C=O bond is syn to the adjacent C—H bond. The observed rare anti conformation of the C=O and O—H bonds of the acid group is similar to that observed in N-(2-methylphenyl)-maleamic acid (Gowda et al., 2010b), N-(2,5-dichlorophenyl)-maleamic acid (Shakuntala et al., 2009) and N-(3,5-dichlorophenyl)- maleamic acid (Gowda et al., 2010a).

The molecular structure of (I) is stabilized by two intramolecular hydrogen bonds (Figure 1): the first is a short O—H···O hydrogen bond within maleamic acid unit and the second is a C—H···O hydrogen bond which connects the amide group with the phenyl ring. Amidic O1 atom acts as bifurcated acceptor of O2—H2A···O1 and C6—H6···O1 intramolecular hydrogen bonds (Table 1).The maleamic acid unit is essentially planar, with r.m.s.deviation of 0.044 Å and makes dihedral angle of 15.2 (1)° with the phenyl ring. The torsion angle C1—N1—C5—C6 = -17.6 (2)° defines the orientation of the phenyl ring towards the central amide group –NHCO. The molecular structure is stabilized by two types intramolecular C—H···O and O—H···O interactions with H···O distances of 1.60 and 2.31 Å respectively and one intermolecular N—H···O hydrogen bonds link the molecules into chains with graph-set notation C(7) (Bernstein et al., 1995) running along the [0 1 0] direction, Table 1, Figure 2.

Experimental

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated dropwise with the solution of 3-chloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3-chloroaniline. The resultant solid N-(3-chlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra.

Rod like colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

All H atoms were found in difference maps and further treated as riding atoms with C—H = 0.93 Å, N—H = 0.86Å and O—H = 0.90 Å. The Uiso(H) values were set at 1.2Ueq(C aromatic, N) and 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and a short intramolecular O—H···O ...
Fig. 2.
Part of crystal structure of (I) showing one-dimensional chain of molecules extending along the [0 1 0] direction and linked by intermolecular N–H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines. Symmetry code ...

Crystal data

C10H8ClNO3F(000) = 464
Mr = 225.62Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8764 reflections
a = 10.7779 (3) Åθ = 2.0–29.5°
b = 13.2103 (4) ŵ = 0.37 mm1
c = 7.1372 (2) ÅT = 295 K
β = 104.976 (3)°Rod, colourless
V = 981.69 (5) Å30.55 × 0.09 × 0.06 mm
Z = 4

Data collection

Oxford Diffraction Gemini R, CCD diffractometer1829 independent reflections
graphite1533 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −13→13
Tmin = 0.852, Tmax = 0.982k = −16→16
15632 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0488P)2 + 0.0776P] where P = (Fo2 + 2Fc2)/3
1829 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.31064 (12)0.29347 (9)0.57205 (19)0.0320 (3)
C20.44462 (13)0.28772 (10)0.6940 (2)0.0372 (3)
H20.47740.22280.72280.045*
C30.52416 (13)0.36307 (11)0.7676 (2)0.0401 (3)
H30.60430.34150.84030.048*
C40.50988 (14)0.47472 (11)0.7564 (2)0.0426 (4)
C50.12674 (13)0.18104 (10)0.42427 (19)0.0319 (3)
C60.03012 (12)0.25287 (10)0.38134 (18)0.0328 (3)
H60.04630.31970.42140.039*
C7−0.09097 (13)0.22302 (11)0.27750 (19)0.0367 (3)
C8−0.11862 (14)0.12464 (12)0.2179 (2)0.0444 (4)
H8−0.2010.10610.1490.053*
C9−0.02125 (16)0.05452 (12)0.2627 (2)0.0509 (4)
H9−0.0383−0.01230.22360.061*
C100.10121 (14)0.08138 (11)0.3646 (2)0.0432 (4)
H100.16620.03310.39320.052*
N10.25350 (10)0.20331 (8)0.53348 (16)0.0346 (3)
H1N0.29980.15190.58130.042*
O10.25666 (9)0.37411 (7)0.51038 (16)0.0479 (3)
O20.40462 (10)0.51612 (8)0.65145 (18)0.0565 (3)
H2A0.34850.46730.59730.085*
O30.59801 (11)0.52618 (9)0.84566 (19)0.0666 (4)
Cl1−0.21185 (3)0.31393 (3)0.22262 (6)0.05280 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0286 (7)0.0273 (7)0.0383 (7)0.0013 (5)0.0054 (6)0.0006 (6)
C20.0316 (7)0.0292 (7)0.0465 (8)0.0040 (6)0.0023 (6)0.0016 (6)
C30.0284 (7)0.0370 (8)0.0484 (8)0.0011 (6)−0.0016 (6)0.0001 (6)
C40.0387 (8)0.0345 (8)0.0524 (9)−0.0072 (6)0.0080 (7)−0.0053 (6)
C50.0306 (7)0.0300 (7)0.0336 (7)−0.0038 (5)0.0054 (6)0.0015 (5)
C60.0314 (7)0.0286 (7)0.0358 (7)−0.0026 (6)0.0042 (6)0.0003 (5)
C70.0307 (7)0.0427 (8)0.0344 (7)−0.0021 (6)0.0045 (6)0.0031 (6)
C80.0362 (8)0.0462 (9)0.0461 (8)−0.0128 (7)0.0019 (6)−0.0033 (7)
C90.0523 (10)0.0333 (8)0.0626 (10)−0.0119 (7)0.0069 (8)−0.0096 (7)
C100.0411 (8)0.0294 (7)0.0560 (9)−0.0008 (6)0.0070 (7)−0.0021 (6)
N10.0293 (6)0.0257 (6)0.0444 (7)0.0022 (5)0.0014 (5)0.0023 (5)
O10.0340 (5)0.0281 (5)0.0707 (7)0.0001 (4)−0.0058 (5)0.0070 (5)
O20.0445 (6)0.0282 (6)0.0871 (9)−0.0008 (5)−0.0004 (6)−0.0016 (5)
O30.0538 (7)0.0450 (7)0.0886 (9)−0.0191 (6)−0.0038 (6)−0.0113 (6)
Cl10.0326 (2)0.0540 (3)0.0625 (3)0.00544 (16)−0.00438 (17)0.00293 (18)

Geometric parameters (Å, °)

C1—O11.2389 (16)C6—C71.3813 (18)
C1—N11.3364 (17)C6—H60.93
C1—C21.4828 (19)C7—C81.376 (2)
C2—C31.330 (2)C7—Cl11.7404 (15)
C2—H20.93C8—C91.374 (2)
C3—C41.483 (2)C8—H80.93
C3—H30.93C9—C101.379 (2)
C4—O31.2073 (18)C9—H90.93
C4—O21.3069 (18)C10—H100.93
C5—C61.3834 (19)N1—H1N0.86
C5—C101.3891 (19)O2—H2A0.90
C5—N11.4178 (17)
O1—C1—N1122.96 (12)C5—C6—H6120.8
O1—C1—C2123.32 (12)C8—C7—C6122.32 (13)
N1—C1—C2113.72 (11)C8—C7—Cl1119.50 (11)
C3—C2—C1128.61 (13)C6—C7—Cl1118.19 (11)
C3—C2—H2115.7C9—C8—C7118.25 (13)
C1—C2—H2115.7C9—C8—H8120.9
C2—C3—C4132.50 (13)C7—C8—H8120.9
C2—C3—H3113.7C8—C9—C10121.25 (14)
C4—C3—H3113.7C8—C9—H9119.4
O3—C4—O2120.99 (14)C10—C9—H9119.4
O3—C4—C3118.36 (14)C9—C10—C5119.50 (14)
O2—C4—C3120.65 (13)C9—C10—H10120.2
C6—C5—C10120.27 (12)C5—C10—H10120.2
C6—C5—N1122.87 (11)C1—N1—C5128.71 (11)
C10—C5—N1116.85 (12)C1—N1—H1N115.6
C7—C6—C5118.41 (12)C5—N1—H1N115.6
C7—C6—H6120.8C4—O2—H2A109.5
O1—C1—C2—C35.1 (2)Cl1—C7—C8—C9179.82 (12)
N1—C1—C2—C3−175.30 (14)C7—C8—C9—C100.0 (2)
C1—C2—C3—C40.0 (3)C8—C9—C10—C50.4 (2)
C2—C3—C4—O3177.02 (16)C6—C5—C10—C9−0.2 (2)
C2—C3—C4—O2−3.3 (3)N1—C5—C10—C9178.16 (13)
C10—C5—C6—C7−0.4 (2)O1—C1—N1—C5−1.2 (2)
N1—C5—C6—C7−178.62 (12)C2—C1—N1—C5179.26 (12)
C5—C6—C7—C80.8 (2)C6—C5—N1—C1−17.6 (2)
C5—C6—C7—Cl1−179.60 (10)C10—C5—N1—C1164.11 (13)
C6—C7—C8—C9−0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.901.602.4992 (14)176
N1—H1N···O3i0.861.992.8403 (15)172
C6—H6···O10.932.312.8658 (16)118

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2280).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010a). Acta Cryst. E66, o51. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010b). Acta Cryst. E66, o1554. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.
  • Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography